【題目】在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過(guò)C點(diǎn)作CEBDE,延長(zhǎng)AF.EC交于點(diǎn)H,下列結(jié)論中:①AF=FH;BO=BF;CA=CH;BE=3ED.正確的是( 。

A. ②③ B. ③④ C. ①②④ D. ②③④

【答案】D

【解析】矩形ABCD,
∴AD∥BC,,AO=OC,OD=OB,AC=BD,
∴AO=OB=OD,
∵AB=1,AD=,由勾股定理得:AC=2,
∴∠ABD=60°,
∴△ABO是等邊三角形,
∴AB=OA=OB, ∠BAO=∠AOB=60°,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵∠DAF=∠AFB,
∴∠BAF=∠BFA,
,∴②正確;
∵CE⊥BD,,
∴∠ECO=30°,
,
,
∴AC=CH,③正確;
∵CFAH不垂直, ∴AF≠FH,①錯(cuò)誤;
∵∠CEO=90°, ∠ECA=30°,
,
BE=3DE,④正確.
正確的有②③④,故選D.

點(diǎn)睛;本題主要考查對(duì)等腰三角形的性質(zhì),勾股定理,三角形的外角性質(zhì),矩形的性質(zhì),平行線(xiàn)的性質(zhì),等邊三角形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC為對(duì)角線(xiàn),AC=BC=5,AB=6,AE是ABC的中線(xiàn).

(1)用無(wú)刻度的直尺畫(huà)出ABC的高CH(保留畫(huà)圖痕跡);

(2)求ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1表示同一時(shí)刻的韓國(guó)首爾時(shí)間和北京時(shí)間,兩地時(shí)差為整數(shù).

(1)設(shè)北京時(shí)間為x(時(shí)),首爾時(shí)間為y(時(shí)),就0≤x≤12,求y關(guān)于x的函數(shù)表達(dá)式,并填寫(xiě)下表(同一時(shí)刻的兩地時(shí)間).

北京時(shí)間

7:30

11:15

2:50

首爾時(shí)間

8:30

12:15

3:50


(2)如圖2表示同一時(shí)刻的英國(guó)倫敦時(shí)間(夏時(shí)制)和北京時(shí)間,兩地時(shí)差為整數(shù).如果現(xiàn)在倫敦(夏時(shí)制)時(shí)間為7:30,那么此時(shí)韓國(guó)首爾時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無(wú)縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個(gè)平行四邊形的面積一定可以表示為( )

A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在線(xiàn)段AB上,AC=6cm,MB=10cm,點(diǎn)M、N分別為AC、BC的中點(diǎn).

(1)求線(xiàn)段BC的長(zhǎng);

(2)求線(xiàn)段MN的長(zhǎng);

(3)若C在線(xiàn)段AB延長(zhǎng)線(xiàn)上,且滿(mǎn)足AC﹣BC=b cm,M,N分別是線(xiàn)段AC,BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)寫(xiě)出你的結(jié)論(不需要說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個(gè)相同的小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?個(gè)空白小正方形中,按下列要求涂上陰影:

(1)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對(duì)稱(chēng)圖形,但不是中心對(duì)稱(chēng)圖形.
(2)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱(chēng)圖形,但不是軸對(duì)稱(chēng)圖形.
(3)選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對(duì)稱(chēng)圖形.
(請(qǐng)將三個(gè)小題依次作答在圖1、圖2、圖3中,均只需畫(huà)出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中共中央國(guó)務(wù)院關(guān)于深化教育改革全面推進(jìn)素質(zhì)教育的決定》中明確指出:“健康體魄是青少年為祖國(guó)和人民服務(wù)的基本前提,是中華民族旺盛生命力的體現(xiàn).” 王老師所在的學(xué)校為加強(qiáng)學(xué)生的體育鍛煉,需購(gòu)買(mǎi)若干個(gè)足球和籃球,他曾三次在某商場(chǎng)購(gòu)買(mǎi)過(guò)足球和籃球,其中有一次購(gòu)買(mǎi)時(shí),遇到商場(chǎng)打折銷(xiāo)售,其余兩次均按標(biāo)價(jià)購(gòu)買(mǎi),三次購(gòu)買(mǎi)足球和籃球的數(shù)量和費(fèi)用如下表:

(1)王老師是第_____次購(gòu)買(mǎi)足球和籃球時(shí),遇到商場(chǎng)打折銷(xiāo)售的;

(2)求足球和籃球的標(biāo)價(jià);

(3)如果現(xiàn)在商場(chǎng)均以標(biāo)價(jià)的6折對(duì)足球和籃球進(jìn)行促銷(xiāo),萬(wàn)老師決定從商場(chǎng)一次性購(gòu)買(mǎi)足球和籃球60個(gè),且總費(fèi)用不能超過(guò)2500元,那么最多可以購(gòu)買(mǎi) _____ 個(gè)籃球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(5,0),菱形OABC的頂點(diǎn)B,C都在第一象限,tan∠AOC= ,將菱形繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<∠α<∠AOC)得到菱形FADE(點(diǎn)O的對(duì)應(yīng)點(diǎn)為點(diǎn)F),EF與OC交于點(diǎn)G,連結(jié)AG.

(1)求點(diǎn)B的坐標(biāo).
(2)當(dāng)OG=4時(shí),求AG的長(zhǎng).
(3)求證:GA平分∠OGE.
(4)連結(jié)BD并延長(zhǎng)交x軸于點(diǎn)P,當(dāng)點(diǎn)P的坐標(biāo)為(12,0)時(shí),求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛慢車(chē)與一輛快車(chē)分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,兩車(chē)在途中相遇后停留一段時(shí)間,然后分別按原速一同駛往甲地后停車(chē)。設(shè)慢車(chē)行駛的時(shí)間為x小時(shí),兩車(chē)之間的距離為y千米,圖中折線(xiàn)表示yx之間的函數(shù)圖象,請(qǐng)根據(jù)圖象解決下列問(wèn)題:

1)甲、乙兩地之間的距離為________千米;

2)求快車(chē)和慢車(chē)的速度。

查看答案和解析>>

同步練習(xí)冊(cè)答案