【題目】如圖,反比例函數(shù)y= (k≠0)的圖象經(jīng)過(guò)A,B兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸,垂足為C,過(guò)點(diǎn)B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點(diǎn)E,若OC=CD,四邊形BDCE的面積為2,則k的值為 .
【答案】-
【解析】解:設(shè)點(diǎn)B坐標(biāo)為(a,b),則DO=﹣a,BD=b
∵AC⊥x軸,BD⊥x軸
∴BD∥AC
∵OC=CD
∴CE= BD= b,CD= DO= a
∵四邊形BDCE的面積為2
∴ (BD+CE)×CD=2,即 (b+ b)×(﹣ a)=2
∴ab=﹣
將B(a,b)代入反比例函數(shù)y= (k≠0),得
k=ab=﹣
所以答案是:﹣
【考點(diǎn)精析】利用比例系數(shù)k的幾何意義和平行線分線段成比例對(duì)題目進(jìn)行判斷即可得到答案,需要熟知幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生的體能情況,隨機(jī)選取了1000名學(xué)生進(jìn)行調(diào)查,并記錄了他們對(duì)長(zhǎng)跑、短跑、跳繩、跳遠(yuǎn)四個(gè)項(xiàng)目的喜歡情況,整理成以下統(tǒng)計(jì)表,其中“√”表示喜歡,“×”表示不喜歡.
項(xiàng)目 | 長(zhǎng)跑 | 短跑 | 跳繩 | 跳遠(yuǎn) |
200 | √ | × | √ | √ |
300 | × | √ | × | √ |
150 | √ | √ | √ | × |
200 | √ | × | √ | × |
150 | √ | × | × | × |
(1)估計(jì)學(xué)生同時(shí)喜歡短跑和跳繩的概率;
(2)估計(jì)學(xué)生在長(zhǎng)跑、短跑、跳繩、跳遠(yuǎn)中同時(shí)喜歡三個(gè)項(xiàng)目的概率;
(3)如果學(xué)生喜歡長(zhǎng)跑、則該同學(xué)同時(shí)喜歡短跑、跳繩、跳遠(yuǎn)中哪項(xiàng)的可能性大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,AE⊥BC,垂足為E,且CF∥AD.
(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE= 度;
(2)若圖1中的∠B=x,∠ACB=y,則∠CFE= ;(用含x、y的代數(shù)式表示)
(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體.
(1)請(qǐng)畫(huà)出這個(gè)幾何體的左視圖和俯視圖;(用陰影表示)
(2)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的俯視圖和左視圖不變,那么最多可以再添加幾個(gè)小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,則S△ADE:S△CDB的值等于( )
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由圖中三角形僅經(jīng)過(guò)一次平移、旋轉(zhuǎn)或軸對(duì)稱變換,不能得到的圖形是()
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 點(diǎn)A1的對(duì)應(yīng)點(diǎn)為點(diǎn)A2 .
(1)畫(huà)出△A1B1C1;
(2)畫(huà)出△A2B2C2;
(3)求出在這兩次變換過(guò)程中,點(diǎn)A經(jīng)過(guò)點(diǎn)A1到達(dá)A2的路徑總長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點(diǎn)D在邊AB的延長(zhǎng)線上,BD=3,過(guò)點(diǎn)D作DE⊥AB,與邊AC的延長(zhǎng)線相交于點(diǎn)E,以DE為直徑作⊙O交AE于點(diǎn)F.
(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點(diǎn)G(如圖2).求證:點(diǎn)G是CD的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對(duì)面一樓房CD的樓底C,樓頂D處,測(cè)得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com