【題目】長(zhǎng)江汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈A射線(xiàn)自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線(xiàn)自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿(mǎn)足|a-3b|+(a+b-4)=0.假定這一帶長(zhǎng)江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若燈B射線(xiàn)先轉(zhuǎn)動(dòng)20秒,燈A射線(xiàn)才開(kāi)始轉(zhuǎn)動(dòng),在燈B射線(xiàn)到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線(xiàn)到達(dá)AN之前.若射出的光束交于點(diǎn)C,過(guò)C作CD⊥AC交PQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過(guò)程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.
【答案】(1)a=3,b=1;(2)A燈轉(zhuǎn)動(dòng)10秒或85秒時(shí),兩燈的光束互相平行;(3)∠BAC與∠BCD的數(shù)量關(guān)系不發(fā)生變化,2∠BAC=3∠BCD.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)列方程組求解即可;
(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況:①在燈A射線(xiàn)到達(dá)AN之前;②在燈A射線(xiàn)到達(dá)AN之后,分別列出方程求解即可;
(3)設(shè)A燈轉(zhuǎn)動(dòng)時(shí)間為t秒,則∠CAN=180°3t,∠BAC=∠BAN∠CAN=3t135°,過(guò)點(diǎn)C作CF∥PQ,則CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°2t,∠BCD=∠ACD∠BCA=2t90°,即可得出結(jié)果.
解:(1)∵|a-3b|+(a+b-4)=0,
∴,
解得:,
故a=3,b=1;
(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,
①在燈A射線(xiàn)到達(dá)AN之前,由題意得:3t=(20+t)×1,
解得:t=10,
②在燈A射線(xiàn)到達(dá)AN之后,由題意得:3t180°=180°(20+t)×1,
解得:t=85,
綜上所述,A燈轉(zhuǎn)動(dòng)10秒或85秒時(shí),兩燈的光束互相平行;
(3)∠BAC與∠BCD的數(shù)量關(guān)系不發(fā)生變化,2∠BAC=3∠BCD;
理由:設(shè)A燈轉(zhuǎn)動(dòng)時(shí)間為t秒,則∠CAN=180°3t,
∴∠BAC=∠BAN∠CAN=45°(180°3t)=3t135°,
∵PQ∥MN,
如圖2,過(guò)點(diǎn)C作CF∥PQ,則CF∥PQ∥MN,
∴∠BCF=∠CBD,∠ACF=∠CAN,
∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°3t=180°2t,
∵CD⊥AC,
∴∠ACD=90°,
∴∠BCD=∠ACD∠BCA=90°(180°2t)=2t90°,
∴2∠BAC=3∠BCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,點(diǎn)P、點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以的速度沿運(yùn)動(dòng),終點(diǎn)為C,點(diǎn)Q以的速度沿運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)終點(diǎn)時(shí)兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P,Q出發(fā)t秒時(shí),的面積為,已知y與t的函數(shù)關(guān)系的圖象如圖曲線(xiàn)OM和MN均為拋物線(xiàn)的一部分,給出以下結(jié)論:;曲線(xiàn)MN的解析式為;線(xiàn)段PQ的長(zhǎng)度的最大值為;若與相似,則秒其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線(xiàn)BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A,B,C分別與D,E,F(xiàn)對(duì)應(yīng),若以點(diǎn)A,D,E為頂點(diǎn)的三角形是等腰三角形,則m的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為6 cm的等邊三角形,動(dòng)點(diǎn)P從A出發(fā),以3 cm/s的速度,沿A-B-C向C運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q從C出發(fā)沿CA方向以1 cm/s的速度向A運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t= ____s,△APQ是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC的高BH,CM交于點(diǎn)P.
(1)求證:PB=PC.
(2)若PB=5,PH=3,求AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,文具店老板購(gòu)進(jìn)100只兩種型號(hào)的文具進(jìn)行銷(xiāo)售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:
型號(hào) | 進(jìn)價(jià)(元/只) | 售價(jià)(元/只) |
A型 | 10 | 14 |
B型 | 15 | 22 |
(1)老板如何進(jìn)貨,能使進(jìn)貨款恰好為1350元?
(2)要使銷(xiāo)售文具所獲利潤(rùn)不少于500元,那么老板最多能購(gòu)進(jìn)A型文具多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有實(shí)根,則a、b的值分別為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E是△ABC內(nèi)的兩點(diǎn),AD平分∠BAC,∠EBC=∠E=60°.若BE=7cm,DE=2cm,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形△ABC中,AB=3,BC=4,AC=5
(1)在圖①中畫(huà)一直線(xiàn)將△ABC分割成兩個(gè)等腰三角形;
(2)現(xiàn)有一點(diǎn)P與Q在△ABC的邊上運(yùn)動(dòng),請(qǐng)?jiān)趥溆脠D上畫(huà)出△APQ有一邊為2的等腰三角形的四種情況.
要求:1、用有刻度的直尺簡(jiǎn)單作圖,并在所畫(huà)等腰三角形中邊長(zhǎng)為2的邊上標(biāo)注數(shù)字2即可,2即為線(xiàn)段BC長(zhǎng)度的一半;2、形狀一樣的算一種圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com