【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(1,0),點(diǎn)B(0, ),把△ABO繞點(diǎn)O順時針旋轉(zhuǎn),得A′B′O,記旋轉(zhuǎn)角為α.
(Ⅰ)如圖①,當(dāng)α=30°時,求點(diǎn)B′的坐標(biāo);
(Ⅱ)設(shè)直線AA′與直線BB′相交于點(diǎn)M.
如圖②,當(dāng)α=90°時,求點(diǎn)M的坐標(biāo);
②點(diǎn)C(﹣1,0),求線段CM長度的最小值.(直接寫出結(jié)果即可)
【答案】(Ⅰ)B′(, );(Ⅱ)①M(, ),②最小值=﹣1.
【解析】試題分析:(Ⅰ)記A′B′與x軸交于點(diǎn)H.只要求出OH,B′H即可解決問題;
(Ⅱ)①作MN⊥OA于N,只要求出ON,MN即可解決問題;
②首先證明:點(diǎn)M的運(yùn)動軌跡為以AB為直徑的⊙O′,當(dāng)C、M、O′共線時,CM的值最小,最小值=CO-AB= -1;
試題解析:
(Ⅰ)記A′B′與x軸交于點(diǎn)H.
∵∠HOA′=α=30°,
∴∠OHA′=90°,
∴OH=OA′cos30°=,B′H=OB′cos30°=,
∴B′(, ).
(Ⅱ)①∵OA=OA′,
∴Rt△OAA′是等腰直角三角形,
∵OB=OB′,
∴Rt△OBB′也是等腰直角三角形,
顯然△AMB′是等腰直角三角形,
作MN⊥OA于N,
∵OB′=OA+AB′=1+2AN=,
∴MN=AN=,
∴M(, ).
②如圖③中,
∵∠AOA′=∠BOB′,OA=OA′,OB=OB′,
∴∠OAA′=∠OA′A=∠OBB′=∠OB′B,
∵∠OAA′+∠OAM=180°,
∴∠OBB′+∠OAM=180°,
∴∠AOB+∠AMB=180°,
∵∠AOB=90°,
∴∠AMB=90°,
∴點(diǎn)M的運(yùn)動軌跡為以AB為直徑的⊙O′,
當(dāng)C、M、O′共線時,CM的值最小,最小值=CO′﹣AB=﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點(diǎn)D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費(fèi)用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在多項(xiàng)式中,表示這個多項(xiàng)式的項(xiàng)數(shù),表示這個多項(xiàng)式中三次項(xiàng)的系數(shù).在數(shù)軸上點(diǎn)與點(diǎn)所表示的數(shù)恰好可以用與分別表示.有一個動點(diǎn)從點(diǎn)出發(fā),以每秒2個單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為秒.
(1)________,___________,線段_________個單位長度;
(2)點(diǎn)所表示數(shù)是________(用含的多項(xiàng)式表示);
(3)求當(dāng)為多少時,線段的長度恰好是線段長度的三倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:順次連接矩形各邊的中點(diǎn),得到一個菱形,如圖①;再順次連接菱形各邊的中點(diǎn),得到一個新的矩形.如圖②;然后順次連接新的矩形各邊的中點(diǎn),得到一個新的菱形,如圖③;如此反復(fù)操作下去,則第3個圖形中直角三角形的個數(shù)有______個,第2018個圖形中直角三角形的個數(shù)有______個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則DF的長等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,且滿足|a+3|+(b-9)2=0,O為原點(diǎn);
(1) a= ,b= .
(2) 若點(diǎn)C從O點(diǎn)出發(fā)向右運(yùn)動,經(jīng)過3秒后點(diǎn)C到A點(diǎn)的距離等于點(diǎn)C到B點(diǎn)距離,求點(diǎn)C的運(yùn)動速度?(結(jié)合數(shù)軸,進(jìn)行分析.)
(3) 若點(diǎn)D以2個單位每秒的速度從點(diǎn)O向右運(yùn)動,同時點(diǎn)P從點(diǎn)A出發(fā)以3個單位每秒的速度向左運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā),以6個單位每秒的速度向右運(yùn)動.在運(yùn)動過程中,M、N分別為PD、OQ的中點(diǎn),問的值是否發(fā)生變化,請說明理由.(注:PD指的是點(diǎn)P與D之間的線段,而算式PQ-OD指線段PQ與OD長度的差.類似的,其它的兩個大寫字母寫在一起時意義一樣 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A(1,﹣k+4).
(1)試確定這兩個函數(shù)的表達(dá)式;
(2)求出這兩個函數(shù)圖象的另一個交點(diǎn)B的坐標(biāo),并根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實(shí)驗(yàn)操作考試,某校對初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有4個不同的操作實(shí)驗(yàn)題目,物理用番號①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測試時每名學(xué)生每科只操作一個實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.
(1)請用樹形圖法或列表法,表示某個同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對物理的①、②和化學(xué)的b、c號實(shí)驗(yàn)準(zhǔn)備得較好,他同時抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com