【題目】如圖,∠MAN=60°,AP平分∠MAN,點B是射線AP上一定點,點C在直線AN上運動,連接BC,將∠ABC(0°<∠ABC<120°)的兩邊射線BC和BA分別繞點B順時針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線AM交于點D和點E.
(1)如圖1,當點C在射線AN上時,
①請判斷線段BC與BD的數(shù)量關系,直接寫出結(jié)論;
②請?zhí)骄烤段AC,AD和BE之間的數(shù)量關系,寫出結(jié)論并證明;
(2)如圖2,當點C在射線AN的反向延長線上時,BC交射線AM于點F,若AB=4,AC=,請直接寫出線段AD和DF的長.
【答案】(1)①BC=BD;②AD+AC= BE;(2)AD=5, DF=.
【解析】試題分析:(1)①結(jié)論:BC=BD.只要證明△BGD≌△BHC即可.②結(jié)論:AD+AC=BE.只要證明AD+AC=2AG=2EG,再證明EB=BE即可解決問題;
(2)如圖2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH,AH,BC,CH, AD的長,由sin∠ACH=,推出AK的長,設FG=y,則AF=﹣y,BF=,由△AFK∽△BFG,可得,可得關于y的方程,求出y即可解決問題.
試題解析:(1)①結(jié)論:BC=BD,
理由:如圖1中,作BG⊥AM于G,BH⊥AN于H,
∵∠MAN=60°,PA平分∠MAN,BG⊥AM于G,BH⊥AN于H,∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC;
②結(jié)論:AD+AC=BE,
∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BEcos30°=BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH﹣CH=2AG=BE,∴AD+AC=BE;
(2)如圖2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K,
由(1)可知,△ABG≌△ABH,△BGD≌△BHC,
易知BH=GB=2,AH=AG=EG=,BC=BD= =,CH=DG=,
∴AD=,∵sin∠ACH=,∴,∴AK=,
設FG=y,則AF=﹣y,BF=,
∵∠AFK=∠BFG,∠AKF=∠BGF=90°,
∴△AFK∽△BFG,∴,∴,解得y=或(舍棄),
∴DF=GF+DG=,即DF=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點 A,B的坐標分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)圖1中,點C的坐標為 ;
(2)如圖2,點D的坐標為(0,1),點E在射線CD上,過點B 作BF⊥BE交y軸于點F.
①當點E為線段CD的中點時,求點F的坐標;
②當點E在第二象限時,請直接寫出F點縱坐標y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標是(m,﹣4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x上有點A1,A2,A3,…An+1,且OA1=1,A1A2=2,A2A3=4,AnAn+1=2n分別過點A1,A2,A3,…An+1作直線y=x的垂線,交y軸于點B1,B2,B3,…Bn+1,依次連接A1B2,A2B3,A3B4,…AnBn+1,得到△A1B1B2,△A2B2B3,△A3B3B4,…,△AnBnBn+1,則△AnBnBn+1的面積為________.(用含有正整數(shù)n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標是1.
(1)求點A的坐標及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2x+c(a≠0)與x軸、y軸分別交于點A,B,C三點,已知點A(﹣2,0),點C(0,﹣8),點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標;
(2)如圖1,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EBP沿直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;
(3)如圖2,設BC交拋物線的對稱軸于點F,作直線CD,點M是直線CD上的動點,點N是平面內(nèi)一點,當以點B,F,M,N為頂點的四邊形是菱形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按些變換規(guī)律將△OA3B3變換成△OA4B4,則A4的坐標是_______,B4的坐標是_________.
(2)若按第(1)題的規(guī)律將△OAB進行了n次變換,得到△OAnBn,比較每次變換中三角形頂點坐標有何變化,找出規(guī)律,請推測An的坐標是_______,Bn的坐標是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查中,最合適采用抽樣調(diào)查的是( 。
A.策坐高鐵對旅客的行李的檢查B.調(diào)查七年級一班全體同學的身高情況
C.了解長沙市民對春節(jié)晚會節(jié)目的滿意程度D.對新研發(fā)的新型戰(zhàn)斗機的零部件進行檢查
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com