【題目】某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種,下圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內溫度18℃的時間有多少小時?
(2)求k的值;
(3)當x=18時,大棚內的溫度約為多少度?

【答案】解:(1)恒溫系統(tǒng)在這天保持大棚溫度18℃的時間為10小時;
(2)∵點B(12,18)在雙曲線y=上,
∴18=,
解得:k=216;
(3)當x=18時,y=12,
所以當x=18時,大棚內的溫度約為12℃.
【解析】(1)直接利用圖象得出恒溫系統(tǒng)在這天保持大棚內溫度18℃的時間;
(2)將(12,18)代入求出k的值即可;
(3)當x=18時,求出y=12,即可得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠A36°,D、E兩點分別在邊AC、BC上,BD平分∠ABC,DEAB.圖中的等腰三角形共有(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關系:

日銷售單價x(元)

3

4

5

6

日銷售量y(個)

20

15

12

10

1)猜測并確定yx之間的函數(shù)關系式,并畫出圖象;

2)設經(jīng)營此賀卡的銷售利潤為W元,求出Wx之間的函數(shù)關系式,

3)若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當日銷售單價x定為多少時,才能獲得最大日銷售利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE∥BF,∠1與∠2互補.

1)試說明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是某汽車行駛的路程S(km)與時間t(min)的函數(shù)關系圖.觀察圖中所提供的信息,解答下列問題:

1)汽車在前9分鐘內的平均速度是多少?

2)汽車在中途停了多長時間?

316≤t≤30時,求St的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推進中原經(jīng)濟區(qū)建設,促進中部地區(qū)崛起,我省汽車領頭企業(yè)鄭州日產(chǎn)實行技術革新,在保證原有生產(chǎn)線的同時,引進新的生產(chǎn)線,今年某月公司接到裝配汽車2400輛的訂單,定價為每輛6萬元,若只采用新的生產(chǎn)線生產(chǎn),則與原生產(chǎn)線相比可以提前8天完成訂單任務,已知新的生產(chǎn)線使汽車裝配效率比以前提高了

1)求原生產(chǎn)線每天可以裝配多少輛汽車?

2)已知原生產(chǎn)線裝配一輛汽車需要成本5萬元,新生產(chǎn)線比原生產(chǎn)線每輛節(jié)省1萬元,于是公司決定兩條生產(chǎn)線同時生產(chǎn),且新生產(chǎn)線裝配的數(shù)量最多是原生產(chǎn)線裝配數(shù)量的2倍,問:如何分配兩條生產(chǎn)線才能使獲得的利潤最大,最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),已知:在中,,,直線經(jīng)過點,直線,直線,垂足分別為點.證明:

(2)如圖(2),將(1)中的條件改為:在中,,、、三點都在直線上,且,其中為任意銳角或鈍角.請問結論是否仍然成立?如成立;請你給出證明;若不成立,請說明理由.

3)拓展與應用:如圖(3),是直線上的兩動點、三點互不重合),點平分線上的一點,且均為等邊三角形,連接、,若,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場欲購進一種商品,當購進這種商品至少為10kg,但不超過30kg時,成本y(元/kg)與進貨量x(kg)的函數(shù)關系如圖所示.

(1)求y關于x的函數(shù)解析式,并寫出x的取值范圍.

(2)若該商場購進這種商品的成本為9.6元/kg,則購進此商品多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠A=1,∠2+3=180°,∠BDE=65°,

1ABDF平行嗎?說明理由;

2)求∠ACB的度數(shù).

查看答案和解析>>

同步練習冊答案