【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于點N,連接BM、DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長。
【答案】(1)證明見解析;(2)MD長為.
【解析】試題分析:(1)根據(jù)矩形性質(zhì)求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,證△DMO≌△BNO,推出OM=ON,得出平行四邊形BMDN,推出菱形BMDN;
(2)根據(jù)菱形性質(zhì)求出DM=BM,在Rt△AMB中,根據(jù)勾股定理得出BM2=AM2+AB2,即可列方程求得.
試題解析:(1)∵四邊形ABCD是矩形
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中
∴△DMO≌△BNO(ASA),
∴OM=ON,
∵OB=OD,
∴四邊形BMDN是平行四邊形,
∵MN⊥BD,
∴平行四邊形BMDN是菱形.
(2)∵四邊形BMDN是菱形,
∴MB=MD,
設(shè)MD長為x,則MB=DM=x,
在Rt△AMB中,BM2=AM2+AB2
即x2=(4-x)2+22,
解得:x=,
答:MD長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4).
(1)請在圖中作出△A′B′C′;
(2)寫出點A′、B′、C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點O.將直線AC繞點O順時針旋轉(zhuǎn)分別交BC、AD于點E、F.
(1)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(2)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,求出此時AC繞點O順時針旋轉(zhuǎn)的角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計:當(dāng)很大時,摸到白球的頻率將會接近 .(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了搞活經(jīng)濟,某商場將一種商品A按標(biāo)價9折出售,仍獲利潤10%,若商品A標(biāo)價為33元,那么商品進貨價為( 。
A. 31元 B. 30.2元 C. 29.7元 D. 27元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a <-1,則方程x2+(1-2a)x+a2=0根的情況是
A. 有兩個不相等的實數(shù)根 B. 有兩個相等的實根
C. 沒有實數(shù)根 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形 ABCD中,AB=10cm,BC=8cm.點P從A出發(fā),沿A→B→C→D路線運動,到D停止;點Q從D出發(fā),沿 D→C→B→A路線運動,到A停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,a秒時點P、點Q同時改變速度,點P的速度變?yōu)槊棵隻cm,點Q的速度變?yōu)槊棵雂cm.圖②是點P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖③是點Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.
(1)、參照圖象,求b、圖②中c及d的值;
(2)、連接PQ,當(dāng)PQ平分矩形ABCD的面積時,運動時間x的值為 ;
(3)、當(dāng)兩點改變速度后,設(shè)點P、Q在運動線路上相距的路程為y(cm),求y(cm)與運動時間x(秒)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(4)、若點P、點Q在運動路線上相距的路程為25cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,與AC交于點D,點O是AB上一點,⊙O過B、D兩點,且分別交AB、BC于點E、F.
(1)求證:AC是⊙O的切線;
(2)已知AB=10,BC=6,求⊙O的半徑r.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com