【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2D2E3E4B3、A3B3C3D3…按如圖所示的方式放置,其中點B1y軸上,點C1、E1、E2、C2、E3、E4C3…在x軸上,已知方形A1B1C1D1的邊長為1,∠B1C1O60°B1C1B2C2B3C3…則正方形A2019B2019C2019D2019的邊長是(

A.()2018B.()2019C.()2018D.()2019

【答案】C

【解析】

利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.

解:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1B2C2B3C3,

D1E1=B2E2D2E3=B3E4,∠D1C1E1=C2B2E2=C3B3E4=30°

D1E1=C1D1sin30°=,

B2C2=

同理可得:B3C3= ,

故正方形AnBnCnDn的邊長是:

則正方形A2019B2019C2019D2019的邊長為:()2018

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°,得到△A1B1C1,則旋轉(zhuǎn)中心的坐標(biāo)是( 。

A.0,0B.1,0C.1,﹣1D.1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊內(nèi)一點繞點C按順時針方向旋轉(zhuǎn),連接已知

求證:是等邊三角形;

當(dāng),試判斷的形狀,并說明理由;

探究:當(dāng)為多少度時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖位置,,以此類推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是( )

A.2015πB.3019C.3018πD.3024π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=BPQ.

(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;

(2)如圖2,選接AB,交PQ于點M,點N在線段PM(不與P、M重合),連接ON、OP,若∠NOP+2OPN=90°,探究直線ABON的位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,M、N分別是AD、BC的中點,P、Q分別是BM、DN的中點.

(1)求證:△MBA≌△NDC;

(2)四邊形MPNQ是什么樣的特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3,-1)、(2,1).

1)以O點為位似中心在y軸的左側(cè)將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點的對應(yīng)點B′的坐標(biāo)是 ;C點的對應(yīng)點C′的坐標(biāo)是

3)在BC上有一點Px,y),按(1)的方式得到的對應(yīng)點P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點D坐標(biāo)并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運(yùn)動當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:

根據(jù)小蕓設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:連接OAOB,OC,

由作圖可知 OA=OB=OC )(填推理的依據(jù))

∴⊙O為△ABC的外接圓;

∵點C,P在⊙O上,

∴∠APB=ACB.( )(填推理的依據(jù))

查看答案和解析>>

同步練習(xí)冊答案