【題目】拋物線yax22ax3a圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)M的縱坐標(biāo)為4,直線MDx軸于點(diǎn)D

1)求拋物線的解析式;

2)如圖1,N為線段MD上一個(gè)動(dòng)點(diǎn),以N為等腰三角形頂角頂點(diǎn),NA為腰構(gòu)造等腰NAG,且G點(diǎn)落在直線CM上.若在直線CM上滿足條件的G點(diǎn)有且只有一個(gè)時(shí),請(qǐng)直接寫出點(diǎn)N的坐標(biāo).

3)如圖,點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),點(diǎn)Q為第四象限內(nèi)拋物線上一點(diǎn),點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,連接PC、AQ.當(dāng)PCAQ時(shí),求SPCQ的值.

【答案】1y=﹣x2+2x+3;(2)點(diǎn)N的坐標(biāo)為(1,﹣4+2 )或(1,3);(3

【解析】

1)求出對(duì)稱軸得到頂點(diǎn)坐標(biāo),代入解析式求出a值即可.
2)當(dāng)直線CM上滿足條件的G點(diǎn)有且只有一個(gè)時(shí),可分兩種情況討論:①NGCM,且NG=NA,如圖2,作CHMDH,如圖2.設(shè)N1,n),易得NG=MN=4-n),NA2=22+n2=4+n2,由題可得NG=NA,由此即可得到關(guān)于n的方程,解這個(gè)方程就可解決問(wèn)題;②A、NG共線,且AN=GN,如圖3,過(guò)點(diǎn)GTx軸于T,則有AD=DT=2,運(yùn)用待定系數(shù)法求出直線CM的解析式,從而得出點(diǎn)G的坐標(biāo),然后運(yùn)用三角形的中位線定理就可解決問(wèn)題.
3)根據(jù)點(diǎn)P在第一象限,點(diǎn)Q在第二象限,且橫坐標(biāo)相差1,進(jìn)而設(shè)出點(diǎn)P3-m-m2+4m)(0m1);得出點(diǎn)Q4-m,-m2+6m-5),得出CP2,AQ2,最后建立方程求解即可.

解:(1)將頂點(diǎn)M坐標(biāo)(1,4)代入解析式,可得a=﹣1,拋物線解析式為y=﹣x2+2x+3

2)當(dāng)直線CM上滿足條件的G點(diǎn)有且只有一個(gè)時(shí),

NGCM,且NGNA,如圖1,

CHMDH

則有∠MGN=∠MHC90°

設(shè)N1,n),

當(dāng)x0時(shí),y3,點(diǎn)C0,3).

M1,4),

CHMH1,

∴∠CMH=∠MCH45°,

NGMN4n).

RtNAD中,

ADDB2DNn,

NA222+n24+n2

4n24+n2

整理得:n2+8n80,

解得:n1=﹣4+2,n2=﹣42(舍負(fù)),

N1,﹣4+2).

AN、G共線,且ANGN,如圖2

過(guò)點(diǎn)GTx軸于T

則有DNGT

根據(jù)平行線分線段成比例可得ADDT2,

OT3

設(shè)過(guò)點(diǎn)C0,3)、M14)的解析式為ypx+q,

則,解得,

∴直線CM的解析式為yx+3

當(dāng)x3時(shí),y6

G3,6),GT6

ANNG,ADDT,

NDGT3

∴點(diǎn)N的坐標(biāo)為(1,3).

綜上所述:點(diǎn)N的坐標(biāo)為(1,﹣4+2 )或(1,3).

3)如圖3,過(guò)點(diǎn)PPDx軸交CQD,

設(shè)P3m,﹣m2+4m)(0m1);∵C03),

PC2=(3m2+(﹣m2+4m32=(m32[m12+1],

∵點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,

Q4m,﹣m2+6m5),

A(﹣1,0).

AQ2=(4m+12+(﹣m2+6m52=(m52[m12+1]

PCAQ

81PC225AQ2,

81m32[m12+1]25m52[m12+1],

0m1

[m12+1]≠0,

81m3225m52,

9m3)=±5m5),

mm(舍),

P,),Q,﹣),

C0,3),

∴直線CQ的解析式為y=﹣x+3

P,),

D),

PD+

SPCQSPCD+SPQDPD×xP+PD×xQxP)=PD×xQ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為,與軸的交點(diǎn)軸交于點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)是直線下方拋物線上的一點(diǎn),過(guò)點(diǎn)的平行線交拋物線于點(diǎn)(點(diǎn)在點(diǎn)右側(cè)),連結(jié)、,當(dāng)的面積為面積的一半時(shí),求點(diǎn)的坐標(biāo);

3)現(xiàn)將該拋物線沿射線的方向進(jìn)行平移,平移后的拋物線與直線的交點(diǎn)為、(點(diǎn)在點(diǎn)的下方),與軸的右側(cè)交點(diǎn)為,當(dāng)相似,求出點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),拋物線軸相交于、兩點(diǎn),與軸交于點(diǎn),;

1)如圖1,求拋物線的解析式;

2)如圖2,點(diǎn)在第四象限的拋物線上,連接軸于點(diǎn)軸于點(diǎn),的延長(zhǎng)線交直線于點(diǎn),求證:

3)如圖3,在(2)的條件下,點(diǎn)上,連接,,求的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,分別在邊上,,則線段的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠C90°AC4,BC3,如圖1,四邊形DEFGABC的內(nèi)接正方形,則正方形DEFG的邊長(zhǎng)為_____.如圖2,若三角形ABC內(nèi)有并排的n個(gè)全等的正方形,它們組成的矩形內(nèi)接于ABC,則正方形的邊長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖一,矩形ABCD中,AB=m,BC=n,將此矩形繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)θθ90°)得到矩形A1BC1D1,點(diǎn)A1在邊CD上.

1)若m=2,n=1,求在旋轉(zhuǎn)過(guò)程中,點(diǎn)D到點(diǎn)D1所經(jīng)過(guò)路徑的長(zhǎng)度;

2)將矩形A1BC1D1繼續(xù)繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)得到矩形A2BC2D2,點(diǎn)D2BC的延長(zhǎng)線上,設(shè)邊A2BCD交于點(diǎn)E,若,求的值.

3)如圖二,在(2)的條件下,直線AB上有一點(diǎn)P,BP=2,點(diǎn)E是直線DC上一動(dòng)點(diǎn),在BE左側(cè)作矩形BEFG且始終保持,設(shè)AB=,試探究點(diǎn)E移動(dòng)過(guò)程中,PF是否存在最小值,若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈市某段地鐵工程由甲、乙兩工程隊(duì)合作天可完成.若單獨(dú)施工,甲工程隊(duì)比乙工程隊(duì)多用天.

求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?

如果甲工程隊(duì)施工每天需付施工費(fèi)萬(wàn)元,乙工程隊(duì)施工每天需付施工費(fèi)萬(wàn)元,甲工程隊(duì)最多要單獨(dú)施工多少天后,再由甲.乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過(guò)萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,P為邊AB上一點(diǎn)

(1) 如圖1,若∠ACPB,求證:AC2AP·AB;

(2) MCP的中點(diǎn),AC2,

如圖2,若∠PBMACPAB3,求BP的長(zhǎng);

如圖3,若∠ABC45°ABMP60°,直接寫出BP的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是作一個(gè)角的角平分線的方法:以的頂點(diǎn)為圓心,以任意長(zhǎng)為半徑畫弧,分別交兩點(diǎn),再分別以為圓心,大于長(zhǎng)為半徑作畫弧,兩條弧交于點(diǎn),作射線,過(guò)點(diǎn)于點(diǎn).

(1)若,求的度數(shù);

(2)若,垂足為,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案