【題目】對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1,可以得到這個(gè)等式,請(qǐng)解答下列問(wèn)題:
(1)寫出圖2中所表示的數(shù)學(xué)等式______________;(最后結(jié)果)
(2)根據(jù)整式乘法的運(yùn)算法則,通過(guò)計(jì)算驗(yàn)證上述等式;
(3)利用(1)中得到的結(jié)論,解決問(wèn)題:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值;
(4)小明同學(xué)用圖3中x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出一個(gè)面積為(5a+2b)(3a+5b)的長(zhǎng)方形,求x+y+z的值.
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)證明見解析;(3)30;(4)56.
【解析】
(1)依據(jù)正方形的面積=(a+b+c)2;正方形的面積=a2+b2+c2+2ab+2ac+2bc,可得等式;
(2)運(yùn)用多項(xiàng)式乘多項(xiàng)式進(jìn)行計(jì)算即可;
(3)依據(jù)a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,進(jìn)行計(jì)算即可;
(4)依據(jù)所拼圖形的面積為:xa2+yab+zb2,而(5a+2b)(3a+5b)=15a2+31ab+10b2,即可得到x,y,z的值.
(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(2)證明:左邊=(a+b+c)(a+b+c)
=a2+ab+ac+ab+b2+bc+ac+bc+c2,
=a2+b2+c2+2ab+2ac+2bc=右邊.
(3)a2+b2+c2=(a+b+c)2-(2ab+2ac+2bc)=100-70=30
(4)(5a+2b)(3a+5b)=15a2+31ab+10b2
而x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形z張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片的面積為xa2+yab+zb2
所以x=15,y=31,z=10,
所以x+y+z=56.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長(zhǎng)是a,BC=b,求△ACD的周長(zhǎng)(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大海中有兩個(gè)島嶼A與B,在海岸線PQ上點(diǎn)E處測(cè)得∠AEP=74°,∠BEQ=30°,在點(diǎn)F處測(cè)得∠AFP=60°,∠BFQ=60°.
(1)判斷AE,AB的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小明和爸爸在800米的環(huán)形跑道上騎車鍛煉,他們?cè)谕坏攸c(diǎn)沿著同一方向同時(shí)出發(fā),騎行結(jié)束后兩人有如下對(duì)話:
小明:您要5分鐘才能第一次追上我.
爸爸:我騎完一圈的時(shí)候,你才騎了半圈!
(1)請(qǐng)根據(jù)他們的對(duì)話內(nèi)容,求小明和爸爸的騎行速度(速度單位:米/分鐘);
(2)爸爸第一次追上小明后,在第二次相遇前,再經(jīng)過(guò)多少分鐘,小明和爸爸相距80米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD=BC,E、F分別是DC、AB邊的中點(diǎn),FE的延長(zhǎng)線分別與AD、BC的延長(zhǎng)線交于H、G點(diǎn).求證:∠AHF=∠BGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,AB=3,BC=4,E,F(xiàn)兩點(diǎn)分別在邊AB,BC上運(yùn)動(dòng),△BEF沿EF折疊后為△GEF,
(1)若BF=a,則線段AG的最小值為 . (用含a的代數(shù)式表示)
(2)問(wèn):在E、F運(yùn)動(dòng)過(guò)程中,取a= 時(shí),AG有最小值,值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=900,∠BAD=600,對(duì)角線AC平分∠BAD,且AB=AC=4,點(diǎn)E、F分別是AC、BC的中點(diǎn),連接DE,EF,DF,則DF的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD,EF相交于點(diǎn)O.
(1)寫出∠COE的鄰補(bǔ)角;
(2)分別寫出∠COE和∠BOE的對(duì)頂角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。
A. 2, B. 2,1 C. 4, D. 4,3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com