【題目】為了解學(xué)生整體的數(shù)學(xué)學(xué)習(xí)能力,年級組織了“數(shù)學(xué)鉆石活動”,從中隨機抽取部分學(xué)生的成績進行統(tǒng)計分析,整理得到如下不完整的頻數(shù)分布表和數(shù)分布直方圖:
(1)表中的 , ;
(2)把上面的頻數(shù)分布直方圖補充完整;
(3)根據(jù)調(diào)查結(jié)果,估計年級500名學(xué)生中,成績不低于85分的人數(shù)。
【答案】(1)0.4, 22;(2)見解析;(3)375人.
【解析】
(1)根據(jù)第一組的頻數(shù)是4,對應(yīng)的頻率是0.05,即可求得總?cè)藬?shù),然后根據(jù)頻率的公式求得a和b的值;
(2)根據(jù)(1)即可直接補全直方圖;
(3)利用總?cè)藬?shù)乘以對應(yīng)的頻率即可求解.
解:(1)抽取的學(xué)生人數(shù)是4÷0.05=80,
則第二組的頻數(shù)是80×0.2=16,
a=32÷80=0.4,
b=80-4-16-32-6=22;
(2)頻數(shù)分布直方圖補充如下:
(3)第四組的頻率是22÷80=0.275,
第五組的頻率是6÷80=0.075,
成績不低于85分的人數(shù):500×(0.4+0.275+0.075)=375(人).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形。例如:某三角形三邊長分別是5,6和8,因為,所以這個三角形是常態(tài)三角形。
(1)若△ABC三邊長分別是2,和4,則此三角形_________常態(tài)三角形(填“是”或“不是”);
(2)若Rt△ABC是常態(tài)三角形,則此三角形的三邊長之比為__________________(請按從小到大排列);
(3)如圖,Rt△ABC中,∠ACB=90°,BC=6,點D為AB的中點,連接CD,若△BCD是常態(tài)三角形,求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,BE平分∠ABC且交邊AD于點E,如果AB=6cm,BC=10cm,
試求:⑴□ABCD的周長;⑵線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商店計劃從廠家購進兩種不同型號的電風(fēng)扇,若購進8臺型和20臺型電風(fēng)扇,需資金7600元,若購進4臺型和15臺型電風(fēng)扇,需資金5300元.
(1)求型電風(fēng)扇每臺的進價各是多少元;
(2)該商店經(jīng)理計劃進這兩種電風(fēng)扇共50臺,而可用于購買這兩種電風(fēng)扇的資金不超過12800元,根據(jù)市場調(diào)研,銷售一臺型電風(fēng)扇可獲利80元,銷售一臺型電風(fēng)扇可獲利120元.若兩種電扇銷售完時,所獲得的利潤不少于5000元.問有哪幾種進貨方案?哪種方案獲得最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,分別在直線上,是平面內(nèi)一點,和的平分線所在直線相交于點.
(1)如圖1,當(dāng)都在直線之間,且時,的度數(shù)為_________;
(2)如圖2,當(dāng)都在直線上方時,探究和之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)在直線兩側(cè)時,直接寫出和之間的數(shù)量關(guān)系是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的高線,在BC邊上截取點E,使得CE=BD,過E作EF∥AB,過C作CP⊥BC交EF于點P。過B作BM⊥AC于M,連接EM、PM。
(1)依題意補全圖形;
(2)若AD=DC,探究EM與PM的數(shù)量關(guān)系與位置關(guān)系,并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB的三個頂點的坐標(biāo)分別是A(-4,3),B(-6,0), O是原點.點M是OB邊上異于O,B的一動點,過點M作MN//AB,點P是AB邊上的任意點,連接AM,PM,PN,BN.設(shè)點.
(1)求出OA所在直線的解析式,并求出點M的坐標(biāo)為(-1,0)時,點N的坐標(biāo).
(2)若 = 時,求此時點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2
(1)求實數(shù)k的取值范圍。
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,反映的是九(1)班學(xué)生外出乘車、步行、騎車的人數(shù)直方圖的一部分和圓形分布圖,下列說法:①九(1)班外出步行有8人;②在圓形統(tǒng)計圖中,步行人數(shù)所占的圓心角度數(shù)為82°;
③九(1)班外出的學(xué)生共有40人;④若該校九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的人約有150人,其中正確的結(jié)論是( 。
A. ①②③ B. ①③④ C. ②③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com