【題目】如圖,等腰直角三角形ABC頂點(diǎn)A在x軸上,∠BCA=90°,AC=BC=2 ,反比例函數(shù)y= (x>0)的圖象分別與AB,BC交于點(diǎn)D,E.連結(jié)DE,當(dāng)△BDE∽△BCA時,點(diǎn)E的坐標(biāo)為 .
【答案】( , )
【解析】解:如圖1,
∵點(diǎn)D、E是反比例函數(shù)y= (x>0)的圖象上的點(diǎn),
∴設(shè)點(diǎn)D的坐標(biāo)是(m, ),點(diǎn)E的坐標(biāo)是(n, ),
又∵∠BCA=90°,AC=BC=2 ,
∴C(n,0),B(n,2 ),A(n﹣2 ,0),
設(shè)直線AB的解析式是:y=ax+b,
則
解得
∴直線AB的解析式是:y=x+2 ﹣n.
又∵△BDE∽△BCA,
∴∠BDE=∠BCA=90°,
∴直線y=x與直線DE垂直,
∴點(diǎn)D、E關(guān)于直線y=x對稱,
∴ = ,
∴mn=3,或m+n=0(舍去),
又∵點(diǎn)D在直線AB上,
∴ =m+2 ﹣n,mn=3,
整理,可得
2n2﹣2 n﹣3=0,
解得n= 或n=﹣ (舍去),
∴點(diǎn)E的坐標(biāo)是( , ).
所以答案是:( , ).
【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國古代計時器“漏壺”的示意圖,在壺內(nèi)盛一定量的水,水從壺底的小孔漏出.壺壁內(nèi)畫有刻度,人們根據(jù)壺中水面的位置計時,用x表示時間,y表示壺底到水面的高度,則y與x的函數(shù)關(guān)系式的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們在上下學(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)圖中自變量是______,因變量是______;
(2)小明家到學(xué)校的路程是 米;
(3)小明在書店停留了 分鐘;
(4)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘;
(5)我們認(rèn)為騎單車的速度超過300米/分鐘就超越了安全限度.問:在整個上學(xué)的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小芳同學(xué)有兩根長度為4cm、10cm的木棒,她想釘一個三角形相框,桌上有五根木棒供她選擇(如圖所示),從中任選一根,能釘成三角形相框的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a= b
B.a=3b
C.a= b
D.a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=8cm,點(diǎn)C是直線AB上一點(diǎn),線段BC=3cm,D、E分別是線段AB與線段CB的中點(diǎn),求線段DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如下表:
甲 | 乙 | |
進(jìn)價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價﹣進(jìn)價)×銷售量)
(1)該商場計劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A是x軸正半軸上的動點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)當(dāng)t=2時,求CF的長;
(2)①當(dāng)t為何值時,點(diǎn)C落在線段BD上;
②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時,將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是矩形,AD∥x軸,A(﹣ ,3 ),AB=2,AD=3.
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)將矩形ABCD向右平移m個單位,使點(diǎn)A、C恰好同時落在反比例函數(shù)y= (x>0)的圖象上,得矩形A'B'C'D'.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com