【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點M,經過B,M 兩點的⊙O交BC于點G,交AB于點F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當BE=3,cosC=時,求⊙O的半徑.
【答案】(1)見解析;(2)
【解析】分析:(1)連結 根據(jù)BM平分∠ABC,得到根據(jù),得到根據(jù)等量代換得到證明OM∥BC,AE是BC邊上的高線,得到,即可證明.
根據(jù)cosC==,求出的長度,根據(jù), cos∠AOM = cosC=,
得到AO=, AB=+OB=,求解即可.
詳解:(1)連結
∵BM平分∠ABC,
∴ 又
∴
∴ OM∥BC,
AE是BC邊上的高線
∴
∴
∴AM是⊙O的切線
(2)∵,
∴,
∴E是BC中點,∴,
∵cosC==,
∴
∵OM∥ BC,,
∴, ∴
又
∴
在中,cos∠AOM = cosC=,
∴AO=,
AB=+OB=,
而
∴=,
OM=,
∴⊙O的半徑是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有8×8的正方形網格,每個小正方形邊長為1,按要求操作并計算。
(1)在8×8的正方形網格中建立平面直角坐標系,使點的坐標為,點的坐標為;
(2)將點向下平移5個單位,再關于軸對稱得到點,則點坐標為(_______,_________);
(3)畫出三角形,并求其面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰Rt△ABC中,D為斜邊AB的中點,點E在AC上,且∠EDC=72°,點F在AB上,滿足DE=DF,則∠CEF的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,點P為x軸上一動點,連接BP,在第一象限內作BC⊥AB且BC=AB
(1) 求點A、B的坐標
(2) 如圖1,連接CP.當CP⊥BC時,作CD⊥BP于點D,求線段CD的長度
(3) 如圖2,在第一象限內作BQ⊥BP且BQ=BP,連接PQ.設P(p,0),直接寫出S△PCQ=_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊四邊形的紙板剪去△DEC,得到四邊形ABCE,測得∠BAE =∠BCE=90°,BC=CE,AB=DE.
(1)能否在四邊形紙板上只剪一刀,使剪下的三角形與△DEC全等?請說明理由;
(2)求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB=8,AC=4,D是AB邊上一點,P是優(yōu)弧的中點,連接PA,PB,PC,PD,當BD的長度為多少時,△PAD是以AD為底邊的等腰三角形?并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明沿街道勻速行走,他注意到每隔6分鐘從背后駛過一輛1路公交車,每隔4分鐘迎面駛來一輛1路公交車.假設每輛1路公交車行駛速度相同,而且1路公交車總站每隔固定時間發(fā)一輛車,那么發(fā)車間隔的時間是________分鐘.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com