【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

【答案】(1)有n張桌子時(shí),第一種能坐(4n+2)人,第二種能坐(2n+4)人.

(2)選擇第一種擺放方式,理由見解析.

【解析】試題分析:能夠根據(jù)桌子的擺放發(fā)現(xiàn)規(guī)律,然后進(jìn)行計(jì)算判斷.

試題解析:解:(1)第一種中,只有一張桌子是6人,后邊多一張桌子多4人.

即有n張桌子時(shí)是6+4n﹣1=4n+2

第二種中,有一張桌子是6人,后邊多一張桌子多2人,

6+2n﹣1=2n+4;

2)打算用第一種擺放方式來擺放餐桌;

因?yàn),?dāng)n=25時(shí),4×25+2=102>98,

當(dāng)n=25時(shí),2×25+4=5498

所以,選用第一種擺放方式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. 2(a+b)=2a+2b B. (2b2)3=8b5 C. 3a22a3=6a5 D. a6a4=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,C點(diǎn)表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.

(1)a=   ,c=   ;

(2)如圖所示,在(1)的條件下,若點(diǎn)A與點(diǎn)B之間的距離表示為AB=|a﹣b|,點(diǎn)B與點(diǎn)C之間的距離表示為BC=|b﹣c|,點(diǎn)B在點(diǎn)A、C之間,且滿足BC=2AB,則b=   ;

(3)在(1)(2)的條件下,若點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時(shí),此時(shí)x=   ,最小值為   

(4)在(1)(2)的條件下,若在點(diǎn)B處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)C處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(m+2)x|m|1﹣6=0是關(guān)于x的一元一次方程,則m的值是(  )

A. 1 B. ﹣1 C. ﹣2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的一塊地,∠ADC=90°,AD=4m,CD=3mAB=13m,BC=12m,求這塊地的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠第一年的利潤(rùn)是20萬元,第三年的利潤(rùn)是y萬元,則y與平均年增長(zhǎng)率x之間的函數(shù)關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,B,C是數(shù)軸上三點(diǎn),O為原點(diǎn),點(diǎn)C對(duì)應(yīng)的數(shù)為3,BC=2,AB=6.

(1)求點(diǎn)A,B對(duì)應(yīng)的數(shù);

(2)動(dòng)點(diǎn)M,N分別同時(shí)從AC出發(fā),分別以每秒3個(gè)單位和1個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).P為AM的中點(diǎn),Q在CN上,且CQ=CN,設(shè)運(yùn)動(dòng)時(shí)間為tt > 0).

①求點(diǎn)P,Q對(duì)應(yīng)的數(shù)(用含t的式子表示);

②t為何值時(shí)OP=BQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點(diǎn)為(﹣2,﹣5)且過點(diǎn)(1,﹣14)的拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.

查看答案和解析>>

同步練習(xí)冊(cè)答案