【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,且DEAC,AEBD

1)求證:四邊形AODE是矩形.

2)若AB=5,BD=8,求矩形AODE的周長.

【答案】1)見解析;(214

【解析】

1)根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質(zhì)可得出ACBD,即∠AOD90°,繼而可判斷出四邊形AODE是矩形;

2)由菱形的性質(zhì)和勾股定理求出OB,得出OA,由矩形的性質(zhì)即可得出答案.

1)證明:四邊形ABCD是菱形,

∴∠AOD=90°

∵DE//AC,AE//BD,

四邊形AODE是平行四邊形.

四邊形AODE是矩形. 

2四邊形ABCD是菱形,

∴∠AOB=90°,OB=OD=BD=×8=4

Rt△AOB中,

在矩形AODE中,

DE=OA=3,AE=OD=4,

∴ OA+OD+DE+AE=14

即矩形AODE的周長為14

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:己知:對于實數(shù)a≥0,b≥0,滿足a+b≥2,當且僅當a = b時,等號成立,此時取得代數(shù)式a+b的最小值.

根據(jù)以上結(jié)論,解決以下問題:

(1)拓展:若a>0,當且僅當a=___時,a+有最小值,最小值為____;

(2)應用:

如圖1,已知點P為雙曲線y=(x>0)上的任意一點,過點PPA⊥x軸,PBy軸,四邊形OAPB的周長取得最小值時,求出點P的坐標以及周長最小值:

如圖2,已知點Q是雙曲線y=(x>0)上一點,且PQ∥x軸, 連接OP、OQ,當線段OP取得最小值時,在平面內(nèi)取一點C,使得以0P、Q、C為頂點的四邊形是平行四邊形,求出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句中正確的有(

經(jīng)過一點,有且只有一條直線與已知直線平行;有公共頂點且和為的兩個角是鄰補角;兩條直線被第三條直線所截,同旁內(nèi)角互補;不相交的兩條直線叫做平行線;直線外的一點到已知直線的垂線段叫做點到直線的距離;

A.0個;B.1個;C.2個;D.3個;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知∠BDC=EFD,∠AED=∠ACB

1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;

2)若DE、F分別是ABAC、CD邊上的中點,SDEF=4,求SABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD的中點O作直線EF,分別交DA的延長線,AB, DCBC的延長線于點E,MN,F

1)求證:△ODE≌△OBF

2)除(1)中這對全等三角形外,再寫出兩對全等三角形(不需要證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點D,且DEAC.

(1)求證:DE是圓O的切線;

(2)若C=30°,CD=10cm,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,,BD平分∠ABC,BC上有動點P

1DPBC時(如圖1),求證:

2DP平分∠BDC時(如圖2),BD、CDCP三者有何數(shù)量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形的頂點、軸上,頂點軸上,已知,

1)平行四邊形的面積為________;

2)如圖1,點邊上的一點,若的面積是平行四邊形,求點的坐標;

3)如圖2,將繞點順時針旋轉(zhuǎn),旋轉(zhuǎn)得,在整個旋轉(zhuǎn)過程中,能否使以點、、為頂點的四邊形是平行四邊形?若能,求點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點.O是△ABC所在平面上的動點,連接OB、OC,點G、F分別是OB、OC的中點,順次連接點D、G、F、E.

(1)如圖,當點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;

(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由.)

查看答案和解析>>

同步練習冊答案