【題目】如圖,拋物線的頂點(diǎn)坐標(biāo)為,并且與軸交于點(diǎn),與軸交于、兩點(diǎn).

)求拋物線的表達(dá)式.

)如圖,設(shè)拋物線的對(duì)稱軸與直線交于點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),過(guò)點(diǎn)軸的平行線,與拋物線交于點(diǎn),問是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2.

【解析】試題分析:(1)設(shè)拋物線的表達(dá)式為y=a(x-2)2-1(a≠0),將點(diǎn)C的坐標(biāo)代入即可得出答案;(2)由直線BC的解析式知,∠OBC=∠OCB=45°.又由題意知∠EFD=∠COB=90°,所以只有△EFD∽△COB,根據(jù)這種情況求點(diǎn)E的坐標(biāo)即可

試題解析:

)該拋物線的頂點(diǎn)坐標(biāo)為,所以該拋物線的解析式為,又該拋物線過(guò)點(diǎn),代入得:

,解得,故該拋物線的解析式為+3

假設(shè)存在點(diǎn)E,使得以DE、F為頂點(diǎn)的三角形與BCO相似.

由(1)知,該拋物線的解析式是y=x2-4x+3,即y=x-1)(x-3),

∴該拋物線與x軸的交點(diǎn)坐標(biāo)分別是A10),B3,0).

C03),

∴易求直線BC的解析式為:y=-x+3

∴∠OBC=OCB=45°

又∵點(diǎn)D是對(duì)稱軸上的一點(diǎn),

D2,1).

如圖,連接DF

EFy軸,

∴只有∠EFD=COB=90°

∵以D、EF為頂點(diǎn)的三角形與BCO相似,

∴∠DEF=FDE=45°,

∴只有EFD∽△COB

設(shè)Ex,-x+3),則Fx,1),

1=x2-4x+3

解得x=2± ,

當(dāng)x=2+時(shí),y=-x+3=1-;

當(dāng)x=2-時(shí),y=-x+3=1+;

E12-,1+)、E22+,1-).

EDF=90°;易知,直線ADy=x-1,聯(lián)立拋物線的解析式有:

x2-4x+3=x-1,解得 x1=1x2=4;

當(dāng)x=1時(shí),y=-x+3=2

當(dāng)x=4時(shí),y=-x+3=-1;

E31,2)、E44,-1).

∴綜上,點(diǎn)E的坐標(biāo)為2-,1+)或(2+1-)或(1,2)或(4,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】銀泰百貨名創(chuàng)優(yōu)品店購(gòu)進(jìn)600個(gè)鑰匙扣,進(jìn)價(jià)為每個(gè)8元,第一周以每個(gè)12元的價(jià)格售出200個(gè),第二周若按每個(gè)12元的價(jià)格銷售仍可售出200個(gè),但商店為了適當(dāng)增加銷量,決定降價(jià)銷售.據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出50個(gè),但售價(jià)不得低于進(jìn)價(jià),單價(jià)降低元銷售,銷售一周后,商店對(duì)剩余鑰匙扣清倉(cāng)處理,以每個(gè)6元的價(jià)格全部售出.

1)如果這批鑰匙扣共獲利1050元,那么第二周每個(gè)鑰匙扣的銷售價(jià)格為多少元?

2)這次降價(jià)活動(dòng),1050元是最高利潤(rùn)嗎?若是,說(shuō)明理由;若不是,求出最高利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家2015年的四個(gè)季度的用電量情況如表1,其中各種電器用電量情況如表2.

1

2

季度名稱

用電量/

電器

用電量/

第一季度

250

空調(diào)

250

第二季度

150

冰箱

400

第三季度

400

彩電

150

第四季度

200

其他

100

小明根據(jù)上面的數(shù)據(jù)制成如圖所示的統(tǒng)計(jì)圖.

根據(jù)以上三幅統(tǒng)計(jì)圖回答下列問題:

(1)從哪幅統(tǒng)計(jì)圖中可以看出各季度用電量變化情況?

(2)從哪幅統(tǒng)計(jì)圖中可以看出冰箱的用電量超過(guò)總用電量的?

(3)從哪幅統(tǒng)計(jì)圖中可以清楚地看出空調(diào)的用電量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:

)若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

)若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,四邊形中,,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問題背景:

我們知道,三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半,如何證明三角形中位線定理呢?

已知:如圖1,在中,分別是的中點(diǎn).

求證:

問題中既要證明兩條線段所在的直線平行,又要證明其中一條線段的長(zhǎng)等于另一線段長(zhǎng)的一半.所以可以用“倍長(zhǎng)法”將延長(zhǎng)一倍:延長(zhǎng),使得,連接這樣只需證明,且.由于的中點(diǎn),容易證明四邊形、四邊形是平行四邊形,證明...

問題解決:

上述材料中“倍長(zhǎng)法”體現(xiàn)的數(shù)學(xué)思想主要是_____ (填入選項(xiàng)前的字母代號(hào)即可)

A.?dāng)?shù)形結(jié)合思想 B.轉(zhuǎn)化思想 C.分類討論思想 D.方程思想

證明四邊形是平行四邊形的依據(jù)是

反思交流:

“智慧小組”在證明中位線定理時(shí),在圖1的基礎(chǔ)上追加了如上輔助線作法:如圖3,分別過(guò)點(diǎn)的垂線,垂足分別為,..

請(qǐng)你根據(jù)“智慧小組”添加的輔助線,證明三角形的中位線定理.

方法遷移:

如圖4、四邊形都是正方形,的中點(diǎn).求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;

(2)連接AD、CD,求D的半徑及扇形DAC的圓心角度數(shù);

(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB4,點(diǎn)D在直線BC上,EAC上,且ACCD,DEAB

1)如圖,將△ECD沿CB方向平移,使點(diǎn)E落在AB上,得△E1C1D1,求平移的距離;

2)如圖,將△ECD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使點(diǎn)E落在AB上,得△E2CD2,求旋轉(zhuǎn)角∠DCD2的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案