已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點(diǎn),AD、BC的延長(zhǎng)線交MN于E、F.
求證:∠DEN=∠F.
分析:連接AC,作GN∥AD交AC于G,連接MG,根據(jù)中位線定理證明MG∥BC,且GM=
1
2
BC,根據(jù)AD=BC證明GM=GN,可得∠GNM=∠GMN,根據(jù)平行線性質(zhì)可得:∠GMF=∠F,∠GNM=∠DEN從而得出∠DEN=∠F.
解答:證明:連接AC,作GN∥AD交AC于G,連接MG.
∵N是CD的中點(diǎn),且NG∥AD,
∴NG=
1
2
AD,G是AC的中點(diǎn),
又∵M(jìn)是AB的中點(diǎn),
∴MG∥BC,且MG=
1
2
BC.
∵AD=BC,
∴NG=GM,
△GNM為等腰三角形,
∴∠GNM=∠GMN,
∵GM∥BF,
∴∠GMF=∠F,
∵GN∥AD,
∴∠GNM=∠DEN,
∴∠DEN=∠F.
點(diǎn)評(píng):此題主要考查平行線性質(zhì),以及三角形中位線定理,關(guān)鍵是證明△GNM為等腰三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點(diǎn)E在BC上,點(diǎn)F在AD上,AF=CE,EF與對(duì)角線BD相交于點(diǎn)O.求證:O是BD的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請(qǐng)?jiān)O(shè)計(jì)兩種不同的分法,將四邊形ABCD分割成四個(gè)三角形,使得分割成的每個(gè)三角形都是等腰三角形.畫(huà)法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認(rèn)為是兩種不同的分法;
(2)畫(huà)圖工具不限,但要求畫(huà)出分割線段;
(3)標(biāo)出能夠說(shuō)明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫(xiě)出畫(huà)法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時(shí),試證明:BE=AE+CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案