【題目】先化簡,再求值:(﹣x2+3﹣7x)+(5x﹣7+4x2),其中x=﹣1.

【答案】解:原式=﹣x2+3﹣7x+5x﹣7+4x2=3x2﹣2x﹣4,
當x=﹣1時,原式=3+2﹣4=1
【解析】原式去括號合并得到最簡結果,把x的值代入計算即可求出值.
【考點精析】解答此題的關鍵在于理解去括號法則的相關知識,掌握去括號、添括號,關鍵要看連接號.擴號前面是正號,去添括號不變號.括號前面是負號,去添括號都變號,以及對代數(shù)式求值的理解,了解求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是(

A.對角線相互垂直的四邊形是菱形

B.四條邊相等的四邊形是菱形

C.對角線相等的四邊形是菱形

D.四個角為直角的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四舍五入法對3.07069取近似值,結果是(精確到十分位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形一定是相似圖形的是( 。
A.任意兩個菱形
B.任意兩個正三角形
C.兩個等腰三角形
D.兩個矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E為BC邊上的一點,將△ABE沿AE翻折得到△AFE,點F恰好落在線段DE上.

(1)求證:FAD=CDE
(2)當AB=5,AD=6,且tan∠ABC=2時,求線段EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD的對角線交于點O,點P是直線BD上任意一點(異于B、O、D三點),過P點作平行于AC的直線交直線AD于點E,交直線BA于點F,當點P在線段BD上時,易證得:AC=PE+PF(如圖①所示).當點P在線段BD的延長線上(如圖②所示)和當點P在線段DB的延長線上(如圖③所示)兩種情況時,探究線段AC、PE、PF之間的數(shù)量關系,并對圖③的結論進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DGBC,ACBCEFAB,1=2,求證:CDAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知任意三角形ABC,

(1)如圖1,過點CDE∥AB,求證:∠DCA=∠A;

(2)如圖1,求證:三角形ABC的三個內角(即∠A、∠B、∠ACB)之和等于180°;

(3)如圖2,求證:∠AGF=∠AEF+∠F;

(4)如圖3,AB∥CD,∠CDE=119°,GF∠DEB的平分線EF于點F,∠AGF=150°,求∠F.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)按從小到大排列為1,2,4,x,6,9,這組數(shù)據(jù)的中位數(shù)為5,那么這組數(shù)據(jù)的眾數(shù)是(

A. 4 B. 5 C. 5.5 D. 6

查看答案和解析>>

同步練習冊答案