【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點(diǎn),且AC=CG,過點(diǎn)C的直線CD⊥BG于點(diǎn)D,交BA的延長線于點(diǎn)E,連接BC,交OD于點(diǎn)F.
(1)求證:CD是⊙O的切線.
(2)若,求∠E的度數(shù).
(3)連接AD,在2的條件下,若CD=,求AD的長.
【答案】
(1)
【解答】證明:如圖1,連接OC,AC,CG,
∵AC=CG,
∴,
∴∠ABC=∠CBG,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OCB=∠CBG,
∴OC∥BG,
∵CD⊥BG,
∴OC⊥CD,
∴CD是⊙O的切線;
(2)
解:∵OC∥BD,
∴△OCF∽△BDF,△EOC∽△EBD,
∴,
∴,
∵OA=OB,
∴AE=OA=OB,
∴OC=OE,
∵∠ECO=90°,
∴∠E=30°;
(3)
解:如圖2,過A作AH⊥DE于H,
∵∠E=30°
∴∠EBD=60°,
∴∠CBD=EBD=30°,
∵CD=,
∴BD=3,DE=,BE=6,
∴AE=BE=2,
∴AH=1,
∴EH=,
∴DH=,
在Rt△DAH中,AD=.
【解析】(1)如圖1,連接OC,AC,CG,由圓周角定理得到∠ABC=∠CBG,根據(jù)同圓的半徑相等得到OC=OB,于是得到∠OCB=∠OBC,等量代換得到∠OCB=∠CBG,根據(jù)平行線的判定得到OC∥BG,即可得到結(jié)論;
(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論;
(3)如圖2,過A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在Rt△DAH中,AD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形OAB的一條直角邊在y軸上,點(diǎn)P是邊AB上的一個(gè)動點(diǎn),過點(diǎn)P的反比例函數(shù)y= 的圖象交斜邊OB于點(diǎn)Q,
(1)當(dāng)Q為OB中點(diǎn)時(shí),AP:PB=
(2)若P為AB的三等分點(diǎn),當(dāng)△AOQ的面積為 時(shí),k的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=1,BC= ,點(diǎn)O為Rt△ABC內(nèi)一點(diǎn),連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,則OA+OB+OC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=k2x+b的圖象交于點(diǎn)P(m,﹣1)和Q(1,2)兩點(diǎn),記一次函數(shù)與坐標(biāo)軸的交點(diǎn)分別為A,B,連接OP,OQ.
(1)求兩函數(shù)的解析式;
(2)求證:△POB≌△QOA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿x軸做如下移動,第一次點(diǎn)A向左移動3個(gè)單位長度到達(dá)點(diǎn)A1 , 第二次將點(diǎn)A1向右移動6個(gè)單位長度到達(dá)點(diǎn)A2 , 第三次將點(diǎn)A2向左移動9個(gè)單位長度到達(dá)點(diǎn)A3 , 按照這種移動規(guī)律移動下去,第n次移動到點(diǎn)An , 如果點(diǎn)An與原點(diǎn)的距離不小于20,那么n的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)(k>0)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有學(xué)生2000名,為了了解學(xué)生在籃球、足球、排球和乒乓球這四項(xiàng)球類運(yùn)動中最喜愛的一項(xiàng)球類運(yùn)動情況,對學(xué)生開展了隨機(jī)調(diào)查,丙將結(jié)果繪制成如下的統(tǒng)計(jì)圖.
請根據(jù)以上信息,完成下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)某位同學(xué)被抽中的概率是 ;
(3)據(jù)此估計(jì)全校最喜愛籃球運(yùn)動的學(xué)生人數(shù)約有 名;
(4)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)華商場以150元/臺的價(jià)格購進(jìn)某款電風(fēng)扇若干臺,很快售完.商場用相同的貨款再次購進(jìn)這款電風(fēng)扇,因價(jià)格提高30元,進(jìn)貨量減少了10臺.
(1)這兩次各購進(jìn)電風(fēng)扇多少臺?
(2)商場以250元/臺的售價(jià)賣完這兩批電風(fēng)扇,商場獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥DE,AB=DE,BF=EC.
(1)求證:AC∥DF;
(2)若CF=1個(gè)單位長度,能由△ABC經(jīng)過圖形變換得到△DEF嗎?若能,請你用軸對稱、平移或旋轉(zhuǎn)等描述你的圖形變換過程;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com