【題目】如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論錯誤的是( )

A. 沿AE所在直線折疊后,△ACE和△ADE重合

B. 沿AD所在直線折疊后,△ADB和△ADE重合

C. A為旋轉(zhuǎn)中心,把△ACE逆時針旋轉(zhuǎn)90°后與△ADB重合

D. A為旋轉(zhuǎn)中心,把△ACB逆時針旋轉(zhuǎn)270°后與△DAC重合

【答案】D

【解析】試題解析:A、由于ACDAEB都是等腰直角三角形,∠CAD=EAB=90°,則AD=AC,BAC=45°,于是∠EAD=135°,CAE=135°,所以ACE≌△ADE,所以A選項的結(jié)論正確;

B、由于ACDAEB都是等腰直角三角形,∠CAD=EAB=90°,則AB=AE,BAC=45°,于是∠BAD=135°,DAE=135°,所以ADB≌△ADE,所以B選項的結(jié)論正確;

C、由A、B選項得到∠CAD=90°,BAE=90°,AB=AE,AD=AC,所以以A為旋轉(zhuǎn)中心,把ACE逆時針旋轉(zhuǎn)90°后與ADB重合,所以C選項的結(jié)論正確;

D、由于四邊形ABCD是平行四邊形,則ACBDAC為全等的等腰直角三角形,ACBDAC只能經(jīng)過翻折和平移才能重合,所以D選項的結(jié)論錯誤.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB分別交x、y軸于點A、B,直線BC分別交x、y軸于點C、B,點A的坐標為(3,0),ABO=30°,且AB⊥BC.

(1)求直線BC和AB的解析式;

(2)將點B沿某條直線折疊到點O,折痕分別交BC、BA于點E、D,在x軸上是否存在點F,使得點D、E、F為頂點的三角形是以DE為斜邊的直角三角形?若存在,請求出F點坐標;若不存在,請說明理由;

(3)在平面直角坐標系內(nèi)是否存在兩個點,使得這兩個點與B、C兩點構(gòu)成的四邊形是正方形?若存在,請求出這兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在兩個不透明的口袋中分別裝有三個顏色分別為紅色、白色、綠色的小球,這三個小球除顏色外其他都相同,
(1)在其中一個口袋中一次性隨機摸出兩個球,請寫出在這一過程中的一個必然事件;
(2)若分別從兩個袋中隨機取出一個球,試求出兩個小球顏色相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、AC是⊙O的兩條弦∠A=25°,過點C的切線與OB的延長線交于點D,則∠D的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線相交于點,的平分線,,

1)若,請求出的度數(shù);

2平分嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩超市(大型商場)同時開業(yè),為了吸引顧客,都舉行有獎酬賓活動:凡購物滿100元,均可得到一次摸獎的機會.在一個紙盒里裝有2個紅球和2個白球,除顏色外其它都相同,摸獎?wù)咭淮螐闹忻鰞蓚球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少.(如下表) 甲超市:

兩紅

一紅一白

兩白

禮金券(元)

5

10

5

乙超市:

兩紅

一紅一白

兩白

禮金券(元)

10

5

10


(1)用樹狀圖表示得到一次摸獎機會時中禮金券的所有情況;
(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ADB△ADC中,下列條件:①BDDC,ABAC;②∠B∠C,∠BAD∠CAD;③∠B∠C,BDDC;④∠ADB∠ADCBDDC.能得出△ADB≌△ADC的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

……

(1)請寫出第4個等式:________________;

(2)觀察上述等式的規(guī)律,猜想第n個等式(用含n的式子表示),并驗證其正確性.

查看答案和解析>>

同步練習冊答案