【題目】如圖,在平面直角坐標(biāo)系中,拋物線 (a1>0)與拋物線 (a2<0)都經(jīng)過y軸正半軸上的點(diǎn)A.過點(diǎn)A作x軸的平行線,分別與這兩條拋物線交于B、C兩點(diǎn),以BC為邊向下作等邊△BCD,則△BCD的面積為 .
【答案】
【解析】解:∵拋物線 的對(duì)稱軸為直線x=1,拋物線 的對(duì)稱軸為直線x=2,
∴AB=2,AC=4,
∴BC=AC﹣AB=2.
∵△BCD為等邊三角形,
∴S△BCD= BC BC= BC2= .
所以答案是: .
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和三角形的面積的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減;三角形的面積=1/2×底×高才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD AB ,EF AB ,垂足分別為 D、F,1 2 ,若A 65 ,B 45 , 求AGD 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB//CD,點(diǎn)G在直線AB上, 點(diǎn)H在直線CD上,點(diǎn)K在AB、CD之間且在G、H所在直線的左側(cè), 若 ∠GKH=60°,點(diǎn)P為線段KH上一點(diǎn)(不和K、H重合),連接PG并延長到M, 設(shè)∠KHC=n∠KGP,要使得為定值,則n=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l所對(duì)應(yīng)的函數(shù)表達(dá)式為y=x.過點(diǎn)A1(0,1)作y軸的垂線交直線l于點(diǎn)B1 , 過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;過點(diǎn)A2作y軸的垂線交直線l于點(diǎn)B2 , 則點(diǎn)B2的坐標(biāo)為( )
A.(1,1)
B.( , )
C.(2,2)
D.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.
(1)寫出點(diǎn)C的坐標(biāo);
(2)當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)初三學(xué)生進(jìn)行物理、化學(xué)實(shí)驗(yàn)操作能力測試.物理、化學(xué)各有3個(gè)不同的操作實(shí)驗(yàn)題目,物理實(shí)驗(yàn)分別用①、②、③表示,化學(xué)實(shí)驗(yàn)分別用a、b、c表示.測試時(shí)每名學(xué)生每科只操作一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.王剛同學(xué)對(duì)物理的①、②號(hào)實(shí)驗(yàn)和化學(xué)的b、c號(hào)實(shí)驗(yàn)準(zhǔn)備得較好.請(qǐng)用畫樹狀圖(或列表)的方法,求王剛同學(xué)同時(shí)抽到兩科都準(zhǔn)備得較好的實(shí)驗(yàn)題目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一張邊長為厘米的正方形桌面,因?yàn)閷?shí)際需要,需將正方形邊長增加厘米,木工師傅設(shè)計(jì)了如圖所示的三種方案:
小明發(fā)現(xiàn)這三種方案都能驗(yàn)證公式:.
對(duì)于方案一,小明是這樣驗(yàn)證的:
大正方形面積可表示為:,也可以表示為:,
.
請(qǐng)你仿照上述方法根據(jù)方案二、方案三,寫出公式的驗(yàn)證過程.
(1)方案二:
(2)方案三:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為第一象限內(nèi)一點(diǎn),點(diǎn)為軸正半軸上一點(diǎn),分別連接,,為等邊三角形,點(diǎn)的橫坐標(biāo)為4.
(1)如圖1,求線段的長;
(2)如圖2,點(diǎn)在線段上(點(diǎn)不與點(diǎn)、點(diǎn)重合),點(diǎn)在線段的延長線上,連接,,,設(shè)的長為,的長為,求與的關(guān)系式(不要求寫出的取值范圍)
(3)在(2)的條件下,點(diǎn)為第四象限內(nèi)一點(diǎn),分別連接,,,為等邊三角形,線段的垂直平分線交的延長線于點(diǎn),交于點(diǎn),連接,交于點(diǎn),連接,若,求點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的反比例函數(shù),且x=8時(shí),y=12.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com