【題目】春節(jié)前,某超市從廠家購進某商品,已知該商品每個的成本價為30元,經(jīng)市場調(diào)查發(fā)現(xiàn),該商品每天的銷售量 (個)與銷售單價 (元) 之間滿足一次函數(shù)關(guān)系,當該商晶每個售價為40元時,每天可賣出300個;當該商晶每個售價為60元時,每天可賣出100個.
(1)與之間的函數(shù)關(guān)系式為__________________(不要求寫出的取值范圍) ;
(2)若超市老板想達到每天不低于220個的銷售量,則該商品每個售價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
【答案】(1);(2)該商品每個售價定為48元時,每天的銷售利潤最大,最大利潤是3960元
【解析】
(1)設(shè)y=kx+b,再根據(jù)每個售價為40元時,每天可賣出300個;當該商晶每個售價為60元時,每天可賣出100個,列方程組,從而確立y與x的函數(shù)關(guān)系為y=10x+700;
(2)設(shè)利潤為W,則,將其化為頂點式,由于對稱軸直線不在之間,應(yīng)說明函數(shù)的增減性,根據(jù)單調(diào)性代入恰當自變量取值,即可求出最大值.
解:(1)設(shè)y與x之間的函數(shù)解析式為y=kx+b,
由題意得,,
解得:,
∴y與x之間的函數(shù)解析式為y=10x+700.
故答案為.
(2)設(shè)每天銷售利潤為元,由題意得
由于,得
∴
又,.當時, 隨著的增大而增大
∴當時,取最大值,最大值為
答:該商品每個售價定為48元時,每天的銷售利潤最大,最大利潤是3960元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,對稱軸與x軸交于點D,若點P為y軸上的一個動點,連接PD,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019 年某市豬肉售價逐月上漲,每千克豬肉的售價(元)與月份(,且為整數(shù))之間滿足一次函數(shù)關(guān)系:,每千克豬肉的成本(元)與月份(,且為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為元,月份成本為元.
(1)求與之間的函數(shù)關(guān)系式;
(2)設(shè)銷售每千克豬肉所獲得的利潤為 (元),求與之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象經(jīng)過點,射線與反比例函數(shù)的圖象的另一個交點為,射線與軸交于點,與軸交于點軸, 垂足為.
求反比例函數(shù)的解析式;
求的長
在軸上是否存在點,使得與相似,若存在,請求出滿足條件點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m+1)x+2(m≠0),請判斷下列結(jié)論是否正確,并說明理由.
(1)當m<0時,函數(shù)y=mx2﹣(2m+1)x+2在x>1時,y隨x的增大而減;
(2)當m>0時,函數(shù)y=mx2﹣(2m+1)x+2圖象截x軸上的線段長度小于2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠計劃購買,兩種型號的機器人加工零件.已知型機器人比型機器人每小時多加工個零件,且型機器人加工個零件用的時間與型機器人加工個零件所用的時間相同.
(1)求,兩種型號的機器人每小時分別加工多少零件;
(2)該工廠計劃采購,兩種型號的機器人共臺,要求每小時加工零件不得少于個,則至少購進型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線與軸交于,兩點,與軸交于點,點是拋物線上在第一象限內(nèi)的一個動點,且點的橫坐標為.
(1)求拋物線的表達式;
(2)如圖1,連接,,,設(shè)的面積為.求關(guān)于的函數(shù)表達式,并求出當為何值時,的面積有最大值;
(3)如圖2,設(shè)拋物線的對稱軸為直線,與軸的交點為.在直線上是否存在點,使得四邊形是平行四邊形?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com