【題目】實施素質(zhì)教育以來,某中學立足于學生的終身發(fā)展,大力開發(fā)課程資源,在七年級設(shè)立六個課外學習小組,下面是七年級學生參加六個學習小組的統(tǒng)計表和扇形統(tǒng)計圖,請你根據(jù)圖表中提供的信息回答下列問題.

學習小組

體育

美術(shù)

科技

音樂

寫作

奧數(shù)

人數(shù)

72

36

54

18

(1)七年級共有學生 人;

(2)在表格中的空格處填上相應(yīng)的數(shù)字;

(3)表格中所提供的六個數(shù)據(jù)的中位數(shù)是 ;

(4)眾數(shù)是

【答案】(1)360;(2)72,108,20%;(3)63;(4)72.

【解析】解:(1)讀圖可知:有10%的學生即36人參加科技學習小組,

故七年級共有學生:36÷10%=360(人).

故答案為:360;

(2)統(tǒng)計圖中美術(shù)占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,

參加美術(shù)學習小組的有:

360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=72(人),

奧數(shù)小組的有360×30%=108(人);

學習小組

體育

美術(shù)

科技

音樂

寫作

奧數(shù)

人數(shù)

72

72

36

54

18

108

故答案為:72,108,20%;

(3)(4)從小到大排列:18,36,54,72,72,108

故眾數(shù)是72,中位數(shù)=(54+72)÷2=63;

故答案為:63,72.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過P作PEAB,通過平行線性質(zhì),可得APC=50°+60°=110°.

問題遷移:

(1)如圖3,ADBC,點P在射線OM上運動,當點P在A、B兩點之間運動時,ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關(guān)系?請說明理由;

(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出CPD、α、β間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個正數(shù)的平方根是2x和x﹣6,這個數(shù)是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.(10分)

1)請在圖中畫出平移后的△A′B′C′。

2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個數(shù)的算術(shù)平方根與它的立方根的值相同,則這個數(shù)是( )

A. 1 B. 01 C. 0 D. 非負數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列多項式分解因式,結(jié)果中不含因式x﹣1的是(  )

A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊ABAC的中點,OABC所在平面上的動點,連接OB、OC,點GF分別是OB、OC的中點,順次連接點D、G、F、E

1)如圖,當點OABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;

2)若四邊形DGFE是菱形,則OABC應(yīng)滿足怎樣的數(shù)量關(guān)系?為什么?

3)當OABC滿足 時,四邊形DGEF是一個矩形(直接填答案,不需證明.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣6x﹣5=0配方可變形為( )
A.(x+3)2=14
B.(x﹣3)2=4
C.(x﹣3)2=14
D.(x+3)2=4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在銳角ABC中,D,E分別為AB,BC中點,F(xiàn)為AC上一點,且AFE=A,DMEF交AC于點M.

(1)求證:DM=DA;

(2)點G在BE上,且BDG=C,如圖②,求證:DEG∽△ECF;

(3)在圖②中,取CE上一點H,使CFH=B,若BG=1,求EH的長.

查看答案和解析>>

同步練習冊答案