【題目】實施素質(zhì)教育以來,某中學立足于學生的終身發(fā)展,大力開發(fā)課程資源,在七年級設(shè)立六個課外學習小組,下面是七年級學生參加六個學習小組的統(tǒng)計表和扇形統(tǒng)計圖,請你根據(jù)圖表中提供的信息回答下列問題.
學習小組 | 體育 | 美術(shù) | 科技 | 音樂 | 寫作 | 奧數(shù) |
人數(shù) | 72 | 36 | 54 | 18 |
(1)七年級共有學生 人;
(2)在表格中的空格處填上相應(yīng)的數(shù)字;
(3)表格中所提供的六個數(shù)據(jù)的中位數(shù)是 ;
(4)眾數(shù)是 .
【答案】(1)360;(2)72,108,20%;(3)63;(4)72.
【解析】解:(1)讀圖可知:有10%的學生即36人參加科技學習小組,
故七年級共有學生:36÷10%=360(人).
故答案為:360;
(2)統(tǒng)計圖中美術(shù)占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,
參加美術(shù)學習小組的有:
360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=72(人),
奧數(shù)小組的有360×30%=108(人);
學習小組 | 體育 | 美術(shù) | 科技 | 音樂 | 寫作 | 奧數(shù) |
人數(shù) | 72 | 72 | 36 | 54 | 18 | 108 |
故答案為:72,108,20%;
(3)(4)從小到大排列:18,36,54,72,72,108
故眾數(shù)是72,中位數(shù)=(54+72)÷2=63;
故答案為:63,72.
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.(10分)
(1)請在圖中畫出平移后的△A′B′C′。
(2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個數(shù)的算術(shù)平方根與它的立方根的值相同,則這個數(shù)是( )
A. 1 B. 0或1 C. 0 D. 非負數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將下列多項式分解因式,結(jié)果中不含因式x﹣1的是( )
A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點,O是△ABC所在平面上的動點,連接OB、OC,點G、F分別是OB、OC的中點,順次連接點D、G、F、E.
(1)如圖,當點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?為什么?
(3)當OA與BC滿足 時,四邊形DGEF是一個矩形(直接填答案,不需證明.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一元二次方程x2﹣6x﹣5=0配方可變形為( )
A.(x+3)2=14
B.(x﹣3)2=4
C.(x﹣3)2=14
D.(x+3)2=4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,D,E分別為AB,BC中點,F(xiàn)為AC上一點,且∠AFE=∠A,DM∥EF交AC于點M.
(1)求證:DM=DA;
(2)點G在BE上,且∠BDG=∠C,如圖②,求證:△DEG∽△ECF;
(3)在圖②中,取CE上一點H,使∠CFH=∠B,若BG=1,求EH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com