【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點(diǎn),且AD=CE,則∠ADC+∠BEA=( 。
A.180°B.170°C.160°D.150°
【答案】A
【解析】
根據(jù)等邊三角形的性質(zhì),得出各角相等各邊相等,已知AD=CE,利用SAS判定△ADC≌△CEB,從而得出∠ACD=∠CBE,則∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°,進(jìn)而利用四邊形內(nèi)角和解答即可.
∵△ABC是等邊三角形,
∴∠A=∠ACB=60°,AC=BC
∵AD=CE
∴△ADC≌△CEB(SAS)
∴∠ACD=∠CBE
∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°.
∴∠BOC=120°,
∴∠DOE=120°,
∴∠ADC+∠BEA=360°﹣60°﹣120°=180°,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育器材室有A、B兩種型號(hào)的實(shí)心球,1只A型球與1只B型球的質(zhì)量共7千克,3只A型球與1只B型球的質(zhì)量共13千克.
(1)每只A型球、B型球的質(zhì)量分別是多少千克?
(2)現(xiàn)有A型球、B型球的質(zhì)量共17千克,則A型球、B型球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的一點(diǎn),F為AB邊上一點(diǎn),連接CF,交BE于點(diǎn)D,且∠ACF=∠CBE,CG平分∠ACB交BD于點(diǎn)G,
(1)如圖1,求證:CF=BG;
(2)如圖2,延長(zhǎng)CG交AB于H,連接AG,過(guò)點(diǎn)C作CP∥AG交BE的延長(zhǎng)線(xiàn)于點(diǎn)P,
求證:PB=CP+CF;
(3)如圖3,在(2)間的條件下,當(dāng)∠GAC=2∠FCH時(shí),若S△AEG=3,BG=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了創(chuàng)建書(shū)香校園,去年又購(gòu)進(jìn)了一批圖書(shū).經(jīng)了解,科普書(shū)的單價(jià)比文學(xué)書(shū)的單價(jià)多4元,用1200元購(gòu)進(jìn)的科普書(shū)與用800元購(gòu)進(jìn)的文學(xué)書(shū)本數(shù)相等.
(1)求去年購(gòu)進(jìn)的文學(xué)羽和科普書(shū)的單價(jià)各是多少元?
(2)若今年文學(xué)書(shū)和科普書(shū)的單價(jià)和去年相比保持不變,該校打算用1000元再購(gòu)進(jìn)一批文學(xué)書(shū)和科普書(shū),問(wèn)購(gòu)進(jìn)文學(xué)書(shū)55本后至多還能購(gòu)進(jìn)多少本科普書(shū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角三角形ABC的兩條高線(xiàn)BE、CD相交于點(diǎn)O,BE=CD.
(1)求證:BD=CE;
(2)判斷點(diǎn)O是否在∠BAC的平分線(xiàn)上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題探究)小敏在學(xué)習(xí)了Rt△ABC的性質(zhì)定理后,繼續(xù)進(jìn)行研究.
(1)(i)她發(fā)現(xiàn)圖①中,如果∠A=30°,BC與AB存在特殊的數(shù)量關(guān)系是 ;
(ii)她將△ABC沿AC所在的直線(xiàn)翻折得△AHC,如圖②,此時(shí)她證明了BC和AB的關(guān)系;請(qǐng)根據(jù)小敏證明的思路,補(bǔ)全探究的證明過(guò)程;
猜想:如果∠A=30°,BC與AB存在特殊的數(shù)量關(guān)系是 ;
證明:△ABC沿AC所在的直線(xiàn)翻折得△AHC,
(2)如圖③,點(diǎn)E、F分別在四邊形ABCD的邊BC、CD上,且∠B=∠D=90°,連接AE、AF、EF,將△ABE、△ADF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形,連接AC,若∠EAF=30°,AB2=27,則△CEF的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)第一次用元購(gòu)進(jìn)某款智能清潔機(jī)器人進(jìn)行銷(xiāo)售,很快銷(xiāo)售一空,商家又用元第二次購(gòu)進(jìn)同款智能清潔機(jī)器人,所購(gòu)進(jìn)數(shù)量是第一次的倍,但單價(jià)貴了元.
(1)求該商家第一次購(gòu)進(jìn)智能清潔機(jī)器人多少臺(tái)?
(2)若所有智能清潔機(jī)器人都按相同的標(biāo)價(jià)銷(xiāo)售,要求全部銷(xiāo)售完畢的利潤(rùn)率不低于(不考慮其它因素),那么每臺(tái)智能清潔機(jī)器人的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點(diǎn),以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=1,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個(gè)最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com