【題目】①是由一個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②,則三視圖發(fā)生改變的是

A. 主視圖,俯視較和左視圖都改變

B. 左視圖

C. 俯視圖

D. 主視圖

【答案】D

【解析】

根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上邊看得到的圖形是俯視圖解,可得答案.

圖①的主視圖是第一層三個小正方形,第二層中間一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;

②的主視圖是第一層三個小正方形,第二層中間一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;所以主視圖發(fā)生改變,選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點B的坐標為,過點B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點E,F.

1)求直線EF的解析式.

2)求四邊形BEOF的面積.

3)若點Py軸上,且是等腰三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),則關于該函數(shù)的下列說法正確的是(

A.該函數(shù)圖象與軸的交點坐標是

B.時,的值隨值的增大而減小

C.時,所得到的的值相同

D.的圖象先向左平移兩個單位,再向上平移個單位得到該函數(shù)圖象

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點H,點F上一點,連接AFCD的延長線于點E

1)求證:AFCACE;

2)若AC5,DC6,當點F的中點時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點A(﹣1,0),B3,0),點C三點.

1)試求拋物線的解析式;

2)點D2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;

3)點N在拋物線的對稱軸上,點M在拋物線上,當以MN、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

1)利用尺規(guī)作圖,在BC邊上求作一點P,使得點P到邊AB的距離等于PC的長;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

2)在(1)的條件下,以點P為圓心,PC長為半徑的⊙P中,⊙P與邊BC相交于點D,若AC6,PC3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組的學生進行社會實踐活動時,想利用所學的解直角三角形的知識測量教學樓的高度,他們先在點D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達點E處,在點E處測得樓頂M的仰角為45°,已知測角儀的高AD1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線y與直線yx相交于AB兩點,點C2,2)、D(﹣2,﹣2)在直線上.

1)若點P1m)為雙曲線y上一點,求PDPC的值;

2)若點Px,y)(x0)為雙曲線上一動點,請問PDPC的值是否為定值?請說明理由;

3)若點Pxy)(x0)為雙曲線上一動點,連接PC并延長PC交雙曲線另一點E,當P點使得PDCE2PC時,求P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關系,其圖象如圖所示.

1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關系式;

2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?

3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應為多少件?

查看答案和解析>>

同步練習冊答案