【題目】如圖,已知四邊形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A與∠C關(guān)系是 .
【答案】互補(bǔ)
【解析】解:∠A與∠C關(guān)系為:互補(bǔ).理由如下: 連結(jié)AC,
∵∠ABC=90°,
∴在Rt△ABC中,由勾股定理得:
AC= =25cm,
∵AD2+DC2=625=252=AC2 ,
∴△ADC是直角三角形,且∠D=90°,
∵∠DAB+∠B+∠BCD+∠D=180°,
∴∠DAB+∠BCD=180°,
即∠A+∠C=180°,
所以答案是:互補(bǔ).
【考點(diǎn)精析】本題主要考查了勾股定理的概念和勾股定理的逆定理的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線l1∥l2 , 且l1、l2分別相交于A、B兩點(diǎn),l4和l1、l2分別交于C、D兩點(diǎn),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.點(diǎn)P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3= .
(2)試找出∠1、∠2、∠3之間的等量關(guān)系,并說明理由.
(3)應(yīng)用(2)中的結(jié)論解答下列問題: 如圖2,點(diǎn)A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù).
(4)如果點(diǎn)P在直線l3上且在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,試探究∠1、∠2、∠3之間的關(guān)系(點(diǎn)P和A、B兩點(diǎn)不重合),直接寫出結(jié)論即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列比較大小的式子中,正確的是( )
A.2<﹣(+5)
B.﹣1>﹣0.01
C.|﹣3|<|+3|
D.﹣(﹣5)>+(﹣7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中有實(shí)數(shù)根的是( )
A.x2+x+2=0
B.x2﹣x+2=0
C.x2﹣x﹣1=0
D.x2﹣x+3=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是( )
A.五次多項(xiàng)式
B.八次多項(xiàng)式
C.三次多項(xiàng)式
D.次數(shù)不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有除顏色外完全相同的2個(gè)紅球和1個(gè)綠球.
(1)現(xiàn)從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球.請用畫樹狀圖或列表的方法,求第一次摸到綠球,第二次摸到紅球的概率;
(2)先從袋中摸出1個(gè)球后不放回,再摸出1個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是多少?請直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com