【題目】某校興趣小組對(duì)網(wǎng)上吐糟較為頻繁的“醫(yī)患關(guān)系”產(chǎn)生了興趣,利用節(jié)假日在某社區(qū)開展了“造成醫(yī)患關(guān)系緊張的原因”的問(wèn)卷調(diào)查.
造成醫(yī)患關(guān)系緊張的原因(單選) |
根據(jù)調(diào)查結(jié)果繪制出了如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問(wèn)題:
(1)這次接受調(diào)查的總?cè)藬?shù)為人;
(2)在扇形統(tǒng)計(jì)圖中,“A”所在扇形的圓心角的度數(shù)為;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市有1000萬(wàn)人,請(qǐng)你估計(jì)選D的總?cè)藬?shù).
【答案】
(1)300
(2)90°
(3)解:由題意可得,
選B的人數(shù)為:300﹣75﹣45﹣60﹣30=90,
補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示:
(4)解:由題意可得:
選D的總?cè)藬?shù)為:1000× =200(萬(wàn)人),
即選D的總?cè)藬?shù)是200萬(wàn)人.
【解析】解:(1)由題意可得,
這次接受調(diào)查的總?cè)藬?shù)為:45÷15%=300,
所以答案是:300;
(2)在扇形統(tǒng)計(jì)圖中,“A”所在扇形的圓心角的度數(shù)為: ,
所以答案是:90°;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形OABC的三個(gè)頂點(diǎn)A、B、C在以O(shè)為圓心的半圓上,過(guò)點(diǎn)C作CD⊥AB,分別交AB、AO的延長(zhǎng)線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說(shuō)明理由;
(2)①求證:CF=OC; ②若半圓O的半徑為12,求陰影部分的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,和都是邊長(zhǎng)為1的等邊三角形.
四邊形ABCD是菱形嗎?為什么?
如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?
在移動(dòng)過(guò)程中,四邊形有可能是矩形嗎?如果是,請(qǐng)求出點(diǎn)B移動(dòng)的距離寫出過(guò)程;如果不是,請(qǐng)說(shuō)明理由圖3供操作時(shí)使用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
①畫出與△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 求點(diǎn)C1的坐標(biāo)。
②以原點(diǎn)O為位似中心,在第四象限畫一個(gè)△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是長(zhǎng)方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若∠DEF=α,用α表示圖3中∠CFE的大小為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖
(1)問(wèn)題:如圖①,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.
求證:ADBC=APBP.
(2)探究:如圖②,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ,上述結(jié)論是否依然成立?說(shuō)明理由.
(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:
如圖③,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)A、B在x軸上,AB⊥BC,AO=OB=2,BC=3
(1)寫出點(diǎn)A、B、C的坐標(biāo).
(2)如圖②,過(guò)點(diǎn)B作BD∥AC交y軸于點(diǎn)D,求∠CAB+∠BDO的大。
(3)如圖③,在圖②中,作AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O為△ABC的外接圓,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線交BC于點(diǎn)F,交⊙O于點(diǎn)D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC.若∠ABC=110°,∠BAC=20°,則∠E的度數(shù)為( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com