【題目】如圖,點(diǎn)E是平行四邊形ABCD的邊BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線(xiàn)于點(diǎn)F,連接AC、BF,∠AEC=2∠ABC;(1)求證:四邊形ABFC是矩形;(2)在(1)的條件下,若△AFD是等邊三角形,且邊長(zhǎng)為4,求四邊形ABFC的面積。
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)由ABCD為平行四邊形,根據(jù)平行四邊形的對(duì)邊平行得到AB與DC平行,根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,由E為BC的中點(diǎn),得到兩條線(xiàn)段相等,再由對(duì)頂角相等,利用ASA可得出三角形ABE與三角形FCE全等;進(jìn)而得出AB=FC,即可得出四邊形ABFC是平行四邊形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四邊形ABFC是矩形.
(2)由等邊三角形的性質(zhì)得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性質(zhì)得出∠ACF=90°,得出AC=CF=2,即可得出四邊形ABFC的面積=ACCF=4.
解:(1)∵四邊形ABCD為平行四邊形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E為BC的中點(diǎn)
∴BE=CE,
在△ABE和△FCE中,,
∴△ABE≌△FCE(ASA);
∴AE=EF,AB=CF,
∴四邊形ABFC是平行四邊形,
∵∠AEC=2∠ABC=∠ABC+∠BAE,
∴∠ABC=BAE,
∴AE=BE
∵AE=EF,BE=CE,
∴AF=BC,
∴平行四邊形ABFC是矩形;
(2)∵△AFD是等邊三角形,
∴∠AFC=60°,AF=DF=4,
∴CF=CD=2,
∵四邊形ABFC是矩形,
∴∠ACF=90°,
∴AC=CF=2,
∴四邊形ABFC的面積=ACCF= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線(xiàn)段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.
(1)求證:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是網(wǎng)上盛傳的一個(gè)關(guān)于數(shù)學(xué)的詭辯問(wèn)題截圖,表1是它的示意表.我們一起來(lái)解答“為什么多出了2元".
花去 | 剩余 | |
買(mǎi)牛肉 | 40元 | 60元 |
買(mǎi)豬腳 | 30元 | 30元 |
買(mǎi)蔬菜 | 18元 | 12元 |
買(mǎi)調(diào)料 | 12元 | 0元 |
總計(jì) | 100元 | 102元 |
表1
花去 | 剩余 | |
買(mǎi)牛肉 | 40元 | 60元 |
買(mǎi)豬腳 | 30元 | 30元 |
買(mǎi)蔬菜 | 元 | 元 |
買(mǎi)調(diào)料 | 元 | 0元 |
總計(jì) | 100元 | 103元 |
表2
花去 | 剩余 | |
買(mǎi)物品1 | a元 | x元 |
買(mǎi)物品2 | b元 | y元 |
買(mǎi)物品3 | c元 | z元 |
買(mǎi)物品4 | d元 | 0元 |
總計(jì) | 100元 | w元 |
表3
花去 | 剩余 | |
買(mǎi)牛肉 | 元 | 元 |
買(mǎi)豬腳 | 元 | 元 |
買(mǎi)蔬菜 | 元 | 元 |
買(mǎi)調(diào)料 | 元 | 元 |
總計(jì) | 元 | / |
表4
(1)為了解釋“剩余金額總計(jì)”與“我手里有100元"無(wú)關(guān),請(qǐng)按要求填寫(xiě)表2中的空格.
(2)如表3中,直接寫(xiě)出各代數(shù)式的值: .
①a+b+c+d=_ ;
②a+x=__ ;
③a+b+y=_ ;
④a+b+c+z=_ 。
(3)如表3中,a、b、c、d都是正整數(shù),則w的最大值等于_ ,最小值等于_ ,由此可以知道“為什么多出了2元”只是一個(gè)詭辯而已.
(4)我們將“花去”記為“一”,“剩余”記為“+”,請(qǐng)?jiān)诒?/span>4中將表1數(shù)據(jù)重新填寫(xiě).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店用1050元購(gòu)進(jìn)第一批某種鋼筆,很快賣(mài)完,又用1440元購(gòu)進(jìn)第二批該種鋼筆,但第二批每支鋼筆的進(jìn)價(jià)是第一批進(jìn)價(jià)的1.2倍,數(shù)量比第一批多了10支。
(1)求第一批每支鋼筆的進(jìn)價(jià)是多少元?
(2)第二批鋼筆按24元/支的價(jià)格銷(xiāo)售,銷(xiāo)售一定數(shù)量后,根據(jù)市場(chǎng)情況,商店決定對(duì)剩余的鋼筆全按8折一次性打折銷(xiāo)售,但要求第二批鋼筆的利潤(rùn)率不低于20%,問(wèn)至少銷(xiāo)售多少支后開(kāi)始打折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察思考:
(1)在∠AOB內(nèi)部畫(huà)1條射線(xiàn)OC,則圖中有3個(gè)不同的角;
(2)在∠AOB內(nèi)部畫(huà)2條射線(xiàn)OC、OD,則圖中有幾個(gè)不同的角?
(3)3條射線(xiàn)呢?你能發(fā)現(xiàn)什么規(guī)律,表示出n條射線(xiàn)能有幾個(gè)不同的角?
請(qǐng)你先解答以上問(wèn)題,再結(jié)合已學(xué)過(guò)的知識(shí),針對(duì)類(lèi)似的圖形也提出三個(gè)問(wèn)題并作答.(要求:畫(huà)出圖形,寫(xiě)出題干,提出問(wèn)題并作答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)題.
(1)合并下列同類(lèi)項(xiàng): 4a2-3b2+2ab-4a2-3b2+5ba
(2)先化簡(jiǎn),再求值:2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中|x﹣1|+(y+2)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角三角形EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下五個(gè)結(jié)論:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合)上述結(jié)論正確的是_____________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,等邊△ABC的頂點(diǎn)A,B的坐標(biāo)分別為(5,0),(9,0),點(diǎn)D是x軸正半軸上一個(gè)動(dòng)點(diǎn),連接CD,將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△BCE,連接DE.
(Ⅰ)直接寫(xiě)出點(diǎn)C的坐標(biāo),并判斷△CDE的形狀,說(shuō)明理由;
(Ⅱ)如圖②,當(dāng)點(diǎn)D在線(xiàn)段AB上運(yùn)動(dòng)時(shí),△BDE的周長(zhǎng)是否存在最小值?若存在,求出△BDE的最小周長(zhǎng)及此時(shí)點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(Ⅲ)當(dāng)△BDE是直角三角形時(shí),求點(diǎn)D的坐標(biāo).(直接寫(xiě)出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線(xiàn)的交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).
(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿(mǎn)足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過(guò)程中∠QPN的邊PQ與射線(xiàn)AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過(guò)程中,DE,DF,AD之間滿(mǎn)足的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論,不用加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com