【題目】校園內(nèi)有一個(gè)由兩個(gè)全等的六邊形(邊長(zhǎng)為)圍成的花壇,現(xiàn)將這個(gè)花壇在原有的基礎(chǔ)上擴(kuò)建成如圖所示的一個(gè)菱形區(qū)域,并在新擴(kuò)建的部分種上草坪,則擴(kuò)建后菱形區(qū)域的周長(zhǎng)為(

A.B.C.D.

【答案】C

【解析】

根據(jù)題意和正六邊形的性質(zhì)得出BMG是等邊三角形,再根據(jù)正六邊形的邊長(zhǎng)得出BG=GM=3.5m,同理可證出AF=EF=3.5m,再根據(jù)AB=BG+GF+AF,求出AB,從而得出擴(kuò)建后菱形區(qū)域的周長(zhǎng).

解:如圖,∵花壇是由兩個(gè)相同的正六邊形圍成,

∴∠FGM=GMN=120°GM=GF=EF,

∴∠BMG=BGM=60°,

∴△BMG是等邊三角形,

BG=GM=3.5m),

同理可證:AF=EF=3.5m

AB=BG+GF+AF=3.5×3=10.5m),

∴擴(kuò)建后菱形區(qū)域的周長(zhǎng)為10.5×4=42m),

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BCA=90,AC=6,BC=8,DAB的中點(diǎn),將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長(zhǎng)等于(

A.5B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線兩點(diǎn)(的左側(cè)),且,與軸交于,拋物線的頂點(diǎn)坐標(biāo)為.

1)求、兩點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)過(guò)點(diǎn)作直線軸,交軸于點(diǎn),點(diǎn)是拋物線上兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與、兩點(diǎn)重合),、與直線分別交于點(diǎn)、,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班的同學(xué)想測(cè)量一教樓AB的高度.如圖,大樓前有一段斜坡,已知的長(zhǎng)為16米,它的坡度.在離點(diǎn)45米的處,測(cè)得一教樓頂端的仰角為,則一教樓的高度約( )米(結(jié)果精確到0.1米)(參考數(shù)據(jù):,,

A. 44.1 B. 39.8 C. 36.1 D. 25.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)州區(qū)某民營(yíng)企業(yè)生產(chǎn)的甲、乙兩種產(chǎn)品,已知2件甲商品的出廠總價(jià)與3件乙商品的出廠總價(jià)相同,3件甲商品的出廠總價(jià)比2件乙商品的出廠總價(jià)多150.

1)求甲、乙商品的出廠單價(jià)分別是多少元?

2)為促進(jìn)萬(wàn)州經(jīng)濟(jì)持續(xù)健康發(fā)展,為商家搭建展示平臺(tái),為行業(yè)創(chuàng)造交流機(jī)會(huì),2019年萬(wàn)州區(qū)舉辦了多場(chǎng)商品展銷會(huì).外地一經(jīng)銷商計(jì)劃購(gòu)進(jìn)甲商品200件,購(gòu)進(jìn)乙商品的數(shù)量是甲的4倍,恰逢展銷會(huì)期間該企業(yè)正在對(duì)甲商品進(jìn)行降價(jià)促銷活動(dòng),甲商品的出廠單價(jià)降低了,該經(jīng)銷商購(gòu)進(jìn)甲的數(shù)量比原計(jì)劃增加了,乙的出廠單價(jià)沒(méi)有改變,該經(jīng)銷商購(gòu)進(jìn)乙的數(shù)量比原計(jì)劃減少了,結(jié)果該經(jīng)銷商付出的總貨款與原計(jì)劃的總貨款恰好相同,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,分別沿長(zhǎng)方形紙片ABCD和正方形紙片EFGH的對(duì)角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。

A. 24 B. 25 C. 26 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)是原點(diǎn),四邊形是矩形,點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為.

1)如圖①,當(dāng)點(diǎn)落在邊上時(shí),求點(diǎn)的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)落在線段上時(shí),交于點(diǎn).求點(diǎn)的坐標(biāo);

3)記為矩形對(duì)角線的交點(diǎn),的面積,求的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,拋物線 y軸于點(diǎn)為A頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H

1求頂點(diǎn)D的坐標(biāo)用含m的代數(shù)式表示);

2當(dāng)拋物線過(guò)點(diǎn)1,-2),且不經(jīng)過(guò)第一象限時(shí),平移此拋物線到拋物線的位置求平移的方向和距離;

3當(dāng)拋物線頂點(diǎn)D在第二象限時(shí)如果∠ADH=∠AHO,m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB90,∠ABC45 ,點(diǎn)OAB的中點(diǎn),過(guò)AC兩點(diǎn)向經(jīng)過(guò)點(diǎn)O的直線作垂線,垂足分別為EF.

1)如圖①,求證:EFAE+CF.

2)如圖②,圖③,線段EF、AECF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案