【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結(jié)論錯誤的是( )
A. B. 若與相切,則
C. 若,則與相切 D. 和的距離為
【答案】B
【解析】
連結(jié)OA、OB,根據(jù)切線的性質(zhì)和l1∥l2得到AB為⊙O的直徑,則l1和l2的距離為2;當(dāng)MN與⊙O相切,連結(jié)OM,ON,當(dāng)MN在AB左側(cè)時,根據(jù)切線長定理得∠AMO=∠AMN=30°,在Rt△AMO中,利用正切的定義可計算出AM=,在Rt△OBN中,由于∠ONB=∠BNM=60°,可計算出BN=,當(dāng)MN在AB右側(cè)時,AM=,所以AM的長為或;當(dāng)∠MON=90°時,作OE⊥MN于E,延長NO交l1于F,易證得Rt△OAF≌Rt△OBN,則OF=ON,于是可判斷MO垂直平分NF,所以OM平分∠NMF,根據(jù)角平分線的性質(zhì)得OE=OA,然后根據(jù)切線的判定定理得到MN為⊙O的切線.
連結(jié)OA、OB,如圖1,
∵⊙O與l1和l2分別相切于點A和點B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴點A、O、B共線,
∴AB為⊙O的直徑,
∴l1和l2的距離為2;故C正確,
作NH⊥AM于H,如圖1,
則NH=AB=2,
∵∠AMN=60°,
∴sin60°=,
∴MN=;故A正確,
當(dāng)MN與⊙O相切,如圖2,連結(jié)OM,ON,
當(dāng)MN在AB左側(cè)時,∠AMO=∠AMN=×60°=30°,
在Rt△AMO中,tan∠AMO=,即AM=,
在Rt△OBN中,∠ONB=∠BNM=60°,tan∠ONB=,即BN=,
當(dāng)MN在AB右側(cè)時,AM=,
∴AM的長為或;故B錯誤,
當(dāng)∠MON=90°時,作OE⊥MN于E,延長NO交l1于F,如圖2,
∵OA=OB,
∴Rt△OAF≌Rt△OBN,
∴OF=ON,
∴MO垂直平分NF,
∴OM平分∠NMF,
∴OE=OA,
∴MN為⊙O的切線.故D正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=45°時,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△BCD中,∠CBD=90°,BC=BD,點A在CB的延長線上,且BA=BC,點E在直線BD上移動,過點E作射線EF⊥EA,交CD所在直線于點F.
(1)試求證圖(1)中:∠BAE=∠DEF;
(2)當(dāng)點E在線段BD上移動時,如圖(1)所示,求證:AE=EF;
(3)當(dāng)點E在直線BD上移動時,在圖(2)與圖(3)中,分別猜想線段AE與EF有怎樣的數(shù)量關(guān)系,并就圖(3)的猜想結(jié)果說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,以斜邊的中點為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)后兩個直角三角形重疊部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點M在第二象限,且經(jīng)過點 A(1,0)和點 B(0,2).則
(1)a 的取值范圍是________;
(2)若△AMO的面積為△ABO面積的倍時,則a的值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是某公園為迎接“中國–南亞博覽會”設(shè)置的一休閑區(qū).,弧的半徑長是米,是的中點,點在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )
A. 米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△ADE,點C的對應(yīng)點E恰好落在BA的延長線上,DE與BC交于點F,連接BD.下列結(jié)論不一定正確的是( )
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能判斷△ABD≌△BAC的條件是( )
A.AD=BC,BD=ACB.AD=BC,∠BAD=∠ABC
C.BD=AC,∠DBA=∠CABD.AD=BC,∠D=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知直線分別與軸,軸交于,兩點,直線:交于點.
(1)求,兩點的坐標(biāo);
(2)如圖1,點E是線段OB的中點,連結(jié)AE,點F是射線OG上一點, 當(dāng),且時,求的長;
(3)如圖2,若,過點作∥,交軸于點,此時在軸上是否存在點,使,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com