【題目】如圖,在平面直角坐標系中,是坐標原點,正方形的頂點、分別在軸與軸上,已知正方形邊長為3,點為軸上一點,其坐標為,連接,點從點出發(fā)以每秒1個單位的速度沿折線的方向向終點運動,當點與點重合時停止運動,運動時間為秒.
(1)連接,當點在線段上運動,且滿足時,求直線的表達式;
(2)連接、,求的面積關于的函數(shù)表達式;
(3)點在運動過程中,是否存在某個位置使得為等腰三角形,若存在,直接寫出點的坐標,若不存在,說明理由.
【答案】(1);(2);(3)存在,點的坐標為(,3)或(3,)或(3,)或(3,)
【解析】
(1)根據(jù)全等三角形的性質(zhì)求出點P坐標,再利用待定系數(shù)法即可解決問題;
(2)分兩種情形討論,點P在線段BC上和點P在線段AB上,分別求解即可解決問題;
(3)分四種情形討論求解即可;
(1)∵點D的坐標為(1,0),
∴OD=1,
∵四邊形ABCO是正方形,且△CPO≌△ODC,
∴CP=OD=1,
∴點P的坐標為(1,3),
設直線OP的解析式為,則有,
∴直線OP的解析式為:;
(2)當點P在線段BC上時,如圖,
=CPCO=(),
當點P在線段AB上時,如圖,
BP=t-3,AP=6-t,AD=3-1=2,
(),
綜上所述,;
(3),
當DC=DP1時,作DH⊥BC于H,如圖:
∵四邊形ABCO是正方形,且DH⊥BC,
∴四邊形DHCO是矩形,
∴,
∴點的坐標為(2,3);
當時,如圖:
,
∴點的坐標為(3,);
當時,如圖:
,
則,
∴點的坐標為(3,);
當時,如圖:
設,
則,
即,
解得:,
∴點的坐標為(3,);
綜上所述,滿足條件的點P坐標為(,3)或(3,)或(3,)或(3,) .
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)與x軸有交點.
(1)求m的取值范圍;
(2)如果該二次函數(shù)的圖像與x軸的交點分別為(x1,0),(x2,0),且2 x1 x2+ x1+ x2≥20,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3,用<a>表示大于a的最小整數(shù).例如:<2.5>=3,<4>=5,<-1.5>=-1.解決下列問題:
(1)[-2.6]=______,<6.2>=______.
(2)已知x,y滿足方程組,則[x]=______,<y>=______,x的取值范圍是______,y的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,、都是等邊三角形,、相交于點,點、分別是線段、的中點.
(1)求證:;
(2)求的度數(shù);
(3)試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了改善辦學條件,計劃購置一批電子白板和一批筆記本電腦,經(jīng)投標,購買1塊電子白板比買3臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買1塊電子白板和一臺筆記本電腦各需多少元?
(2)根據(jù)該校實際情況,需購買電子白板和筆記本電腦的總數(shù)為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?
(3)上面的哪種購買方案最省錢?按最省錢方案購買需要多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下面的推理過程補充完整,并在括號內(nèi)填上理由.
已知:B、C、E三點在一條直線上,∠3=∠E,∠4+∠2=180°.
試說明:∠BCF=∠E+∠F
解:∵∠3=∠E(已知)
∴EF∥ (內(nèi)錯角相等,兩直線平行)
∵∠4+∠2=180°(已知)
∴CD∥
∴CD∥ (平行于同一條直線的兩條直線互相平行)
∴∠1=∠F,
∠2=
∵∠BCF=∠1+∠2(已知)
∴∠BCF=∠E+∠F(等量代換)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強學生的安全意識,某校組織了一次全校1500名學生都參加的“安全知識”考試,考題共10題.考試結束后,學校隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計圖中,m= ,n= ,“答對10題”所對應扇形的圓心角為 度;
(2)將條形統(tǒng)計圖補充完整;
(3)請根據(jù)以上調(diào)查結果,估算出該校答對超過7題的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD中,AB=8cm,BC=16cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE,判斷四邊形AFCE的形狀,并說明理由;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),P點沿著A→F→B→A勻速運動,Q點沿著C→D→E→C勻速運動,在運動過程中:
① 已知點P的速度為10cm/s,點Q的速度為8cm/s,運動時間為t秒,問當t為何值時,點A,C,P,Q組成的四邊形為平行四邊形?
② 點P,Q的運動路程分別為a,b(單位:cm,ab≠0),問當a,b滿足怎樣的關系式時,點A,C,P,Q組成的四邊形為平行四邊形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com