【題目】如圖5,O為直線AB上一點, ∠AOC=48°,OE平分∠AOC, ∠DOE=90°
(1)求∠BOE的度數(shù)。
(2)試判斷OD是否平分∠BOC?試說明理由。
【答案】(1)156°;(2)OD平分∠BOC。理由見解析
【解析】試題分析:(1)由角分線的定義,得到∠AOE的度數(shù),再用鄰補角的定義即可得到∠BOE的度數(shù);
(2)由角分線的定義,得到∠EOC的度數(shù),再由∠DOE=90°,得到∠DOC的度數(shù),進而求出∠BOD 的度數(shù),即可判斷出結(jié)論.
試題解析:解:(1)∵OE平分∠AOC,∴∠AOE=∠EOC=∠AOC=×48°=24°,∴∠BOE=180°-∠AOE=180°-24°=156° ;
(2)OD平分∠BOC.理由如下:
∵∠DOE=90°,∠EOC=24°,∴∠DOC =∠DOE -∠EOC =90°-24°=66°.
∵∠BOD =∠BOE-∠DOE=156°-90°=66°,∴∠DOC=∠BOD ,∴OD平分∠BOC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)“綜合與實踐”課中,老師帶領(lǐng)同學(xué)們來到婁底市郊區(qū),測算如圖所示的仙女峰的高度,李紅盛同學(xué)利用已學(xué)的數(shù)學(xué)知識設(shè)計了一個實踐方案,并實施了如下操作:先在水平地面A處測得山頂B的仰角∠BAC為38.7°,再由A沿水平方向前進377米到達山腳C處,測得山坡BC的坡度為1:0.6,請你求出仙女峰的高度(參考數(shù)據(jù):tan38.7°≈0.8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天數(shù)學(xué)課上老師講了整式的加減運算,小穎回家后拿出自己的課堂筆記,認真地復(fù)習(xí)老師在課堂上所講的內(nèi)容,她突然發(fā)現(xiàn)一道題目:5(2a2+3ab-b2)-(-3+ab+5a2+b2)=5a2■-6b2+3被墨水弄臟了,請問被墨水遮蓋住的一項是()
A.+14abB.+3abC.+16abD.+2ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.點P在線段AB上以lcm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=l時,△ACP與△BPQ是否全等?PC與PQ是否垂直?請分別說明理由;
(2)如圖(2),將圖(1)中的“AC上AB于A,BD上AB于B”改為“∠CAB=∠DBA=60”,其他條件不變.設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.
(1)如圖1,矩形ABCD中,若AB=3,BC=9,則稱矩形ABCD為 階奇異矩形.
(2)如圖2,矩形ABCD長為7,寬為3,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.
(3)已知矩形ABCD的一邊長為20,另一邊長為a(a<20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形,并閱讀相關(guān)文字.
2條直線相交,3條直線相交,4條直線相交,5條直線相交;
有2對對頂角,有6對對頂角,有12對對頂角,有20對對頂角;
通過閱讀分析上面的材料,計算后得出規(guī)律,當n條直線相交于一點時,有多少對對頂角出現(xiàn)(n為大于2的整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com