【題目】設(shè), ,……, ,(n為正整數(shù))
(1)試說明是8的倍數(shù);
(2)若△ABC的三條邊長分別為、、(為正整數(shù))
①求的取值范圍.
②是否存在這樣的,使得△ABC的周長為一個(gè)完全平方數(shù),若存在,試舉出一例,若不存在,說明理由.
【答案】(1)證明見解析(2)①k>1;②當(dāng)k=5時(shí),△ABC的周長為一個(gè)完全平方數(shù).
【解析】試題分析:(1)根據(jù)題意可以對(duì)an進(jìn)行化簡(jiǎn),從而可以解答本題;(2)①根據(jù)(1)中的結(jié)果,可以得到ak、ak+1、ak+2的值,從而可以得到k的取值范圍;②根據(jù)①中ak、ak+1、ak+2的值,可以求得△ABC的周長,從而可以解答本題.
試題解析:(1)∵an=(2n+1)2﹣(2n﹣1)2
=[(2n+1)﹣(2n﹣1)][(2n+1)+(2n﹣1)]=2×4n=8n,
∵8n能被8整除,∴an是8的倍數(shù);
(2)①由(1)可得,ak=8k,ak+1=8(k+1),ak+2=8(k+2),
∴8k+8(k+1)>8(k+2),解得,k>1,即k的取值范圍是:k>1;
②存在這樣的k,使得△ABC的周長為一個(gè)完全平方數(shù),
理由:∵△ABC的周長是:8k+8(k+1)+8(k+2)=24k+24=24(k+1)=4×6×(k+1),
∴△ABC的周長為一個(gè)完全平方數(shù),則k+1=6得k=5即可,
即當(dāng)k=5時(shí),△ABC的周長為一個(gè)完全平方數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(a,b)是雙曲線y=(x>0)上的一點(diǎn),點(diǎn)P是x軸負(fù)半軸上的一動(dòng)點(diǎn),AC⊥y軸于點(diǎn)C,過點(diǎn)A作AD⊥x軸于點(diǎn)D,連接AP交y軸于點(diǎn)B.
(1)△PAC的面積是 ;
(2)當(dāng)a=2,點(diǎn)P的坐標(biāo)為(﹣2,0)時(shí),求△ACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC≌△DEF,且△ABC周長為100,AB=35,DF=30,則EF的長為( 。
A. 35 B. 30 C. 35 D. 30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知28a2bm÷4anb2=7b2,那么m,n的值為( )
A. m=4,n=2 B. m=4,n=1 C. m=1,n=2 D. m=2,n=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. (3)+(4)= 3+4= 7 B. (3)+(4)= 3+4= 7
C. (3)(4)=3+4= 1 D. (3)(4)=34=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太倉港區(qū)道路綠化工程工地有大量貨物需要運(yùn)輸,某車隊(duì)有載重量為8噸和10噸的卡車共15輛,所有車輛運(yùn)輸一次能運(yùn)輸128噸貨物.
(1)求該車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的擴(kuò)大,車隊(duì)需要一次運(yùn)輸貨物170噸以上,為了完成任務(wù),車隊(duì)準(zhǔn)備增購這兩種卡車共5輛(兩種車都購買),請(qǐng)寫出所有可能的購車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中,不是同類項(xiàng)的是( )
A. 12x2y和13x2y B. -ab和3ba C. -3和7 D. 25x2y和52xy3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com