【題目】為了解某校九年級學生立定跳遠水平,隨機抽取該年級名學生進行測試,并把測試成績(單位:) 繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請根據(jù)圖表中所提供的信息,完成下列問題
(1)表中= ,= ;
(2)請把頻數(shù)分布直方圖補充完整;
(3)跳遠成績大于等于為優(yōu)秀,若該校九年級共有名學生,估計該年級學生立定跳遠成績優(yōu)秀的學生有多少人?
【答案】(1)8,20 (2)見解析 (3)330人
【解析】
(1)根據(jù)頻數(shù)分布直方圖可知a的值,然后根據(jù)題目中隨機抽取該年級50名學生進行測試,可以求得b的值;
(2)根據(jù)(1)中b的值可以將頻數(shù)分布直方圖補充完整;
(3)根據(jù)頻數(shù)分布表中的數(shù)據(jù),可以算出該年級學生立定跳遠成績優(yōu)秀的學生有多少人.
(1)由頻數(shù)分布直方圖可知,a=8,
b=50-8-12-10=20,
故答案為:8,20;
(2)由(1)知,b=20,
補全的頻數(shù)分布直方圖如圖所示;
(3)550×=330(人),
答:該年級學生立定跳遠成績優(yōu)秀的學生有330人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,點在上,直角的直角邊 在上,且.現(xiàn)將繞點以每秒的速度按逆時針方向旋轉(zhuǎn)(的對應點分別是), 同時,射線繞點以每秒的速度按順時針方向旋轉(zhuǎn)( 的對應點是).設旋轉(zhuǎn)時間為 秒,( )在旋轉(zhuǎn)的過程中,若射線與邊平行時,則 的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
(1)寫出扇形圖中a= %,并補全條形圖;
(2)在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是 個、 個.
(3)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點P為線段AB上的動點(與A、B兩點不重合),在同一平面內(nèi),把線段AP、BP分別折成等邊△CDP和△EFP,且D、P、F三點共線,如圖所示.
(1)若DF=2,求AB的長;
(2)若AB=18時,等邊△CDP和△EFP的面積之和是否有最大值,如果有最大值,求最大值及此時P點位置,若沒有最大值,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山,就是金山銀山”.某旅游景區(qū)為了保護環(huán)境,需購買兩種型號的垃圾處理設備共10臺,已知每臺型設備日處理能力為12噸;每臺型設備日處理能力為15噸,購回的設備日處理能力不低于140噸.
(1)請你為該景區(qū)設計購買兩種設備的方案;
(2)已知每臺型設備價格為3萬元,每臺型設備價格為4.4萬元.廠家為了促銷產(chǎn)品,規(guī)定貨款不低于40萬元時,則按9折優(yōu)惠;問:采用(1)設計的哪種方案,使購買費用最少,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:
與標準質(zhì)量的差值 (單位:克) | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質(zhì)量比標準質(zhì)量多還是少?多或少幾克?
(2)若標準質(zhì)量為450克,則抽樣檢測的20袋食品的總質(zhì)量為多少克?
(3)若該種食品的合格標準為450±5克,求該食品的抽樣檢測的合格率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需18元;3只A型節(jié)能燈和2只B型節(jié)能燈共需19元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共40只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能
燈數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, DE AB 于 E , DF AC 于 F ,若 BD CD 、 BE CF ,
(1)求證:AD平分BAC ;
(2)已知AC 14,BE 2,求AB的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com