【題目】李老師每天堅持晨跑.下圖反映的是李老師某天6:20從家出發(fā)小跑到趙化北門,在北門休息幾分鐘后又慢跑回家的函數(shù)圖象. 其中(分鐘)表示所用時間, (千米)表示李歡離家的距離.
(1)分別求出線段0≤x≤10和15≤x≤40的函數(shù)解析式?
(2)李老師在這次晨跑過程中什么時間距離家500米?
【答案】(1)當0≤x≤10時,y=0.1x;當15≤x≤40時,y=3.2-0.08x;
(2)李老師在這次晨跑過程中分別于5分、33.75分距離家500米。
【解析】試題分析:(1)利用待定系數(shù)法即可求得;(2)求出OA的解析式,然后根據(jù)OA、BC的解析式,利用y=0.5千米計算求出相應的x的值,再加上6點20分即可.
試題解析:(1)設OA的解析式為y1=kx,
則10k=2,
解得k=,
所以,y=x,
設直線BC解析式為y2=k1x+b,
∵函數(shù)圖象經(jīng)過點(15,2),(40,0),
∴,
解得.
所以,直線BC解析式為y=x+;
∴線段0x10的函數(shù)解析式為y1=x(0x10),
線段15x40的函數(shù)解析式為y2=x+ (15x40);
(2)當y1=0.5km時,0.5=x,x=2.5,
當y2=0.5km時,0.5=x+,x==33.75,
∴李老師在這次晨跑過程中分別于6點22.5分和6點53.75分距離家500米。
科目:初中數(shù)學 來源: 題型:
【題目】“珍重生命,注意安全!”同學們在上下學途中一定要注意騎車安全.小明騎單車上學,當他騎了一段時,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學校,以下是他本次所用的時間與路程的關系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學校的路程是多少米?
(2)小明在書店停留了多少分鐘?
(3)本次上學途中,小明一共行駛了多少米?一共用了多少分鐘?
(4)我們認為騎單車的速度超過300米/分鐘就超越了安全限度.問:在整個上學的途中哪個時間段小明騎車速度最快,速度在安全限度內嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列7個事件中:(1)擲一枚硬幣,正面朝上.(2)從一副沒有大小王的撲克牌中抽出一張恰為黑桃.(3)隨意翻開一本有400頁的書,正好翻到第100頁.(4)天上下雨,馬路潮濕.(5)你能長到身高4米.(6)買獎券中特等大獎.(7)擲一枚正方體骰子,得到的點數(shù)<7.其中(將序號填入題中的橫線上即可)確定事件為________;不確定事件為________;不可能事件為________;必然事件為________;不確定事件中,發(fā)生可能性最大的是________,發(fā)生可能性最小的是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知中, , .如圖,將進行折疊,使點落在線段上(包括點和點),設點的落點為,折痕為,當是等腰三角形時,點可能的位置共有( ).
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中, , 兩點的坐標分別為, ,連接,若以點, , 為頂點的三角形是等腰直角三角形,則點坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E、F分別是AB和CD上的點,DE、AF分別交BC于點G、H, AB∥CD,∠A=∠D,試說明:(1)AF∥ED;(2)∠BED=∠A;(3) ∠1=∠2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com