【題目】如圖,ABC中,ABAC

1)用無刻度的直尺和圓規(guī)作ABC的外接圓;(保留畫圖痕跡)

2)若AB10,BC16,求ABC的外接圓半徑.

【答案】1)見解析;(2

【解析】

1)用尺規(guī)作邊ABAC的垂直平分線,兩線相交于點O進而作出ABC的外接圓;

2)根據(jù)垂徑定理和勾股定理即可求出外接圓的半徑.

解:(1)如圖所示即為ABC的外接圓

2)連接OBOA,交BC于點D,

OBOA

ADBC,

根據(jù)垂徑定理,得

BDDCBC8,∠ODB90°

在在RtABD中,根據(jù)勾股定理,得

RtBOD中,根據(jù)勾股定理,得

OB2OD2+BD2

OB2=(OB62+82

解得OB

答:ABC的外接圓半徑為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yx2+4x+3.

1)求出該拋物線對稱軸和頂點坐標.

2)在所給的平面直角坐標系中用描點法畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是_____

(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,CDAB于點D,CD3.點P從點A出發(fā)沿線段AC以每秒1個單位的速度向終點C運動.過點PPQABBC于點Q,過點PAC的垂線,過點QAC的平行線,兩線交于點E.設點P的運動時間為t秒.

1)求線段PQ的長.(用含t的代數(shù)式表示)

2)當點E落在邊AB上時,求t的值.

3)當△PQE與△ACD重疊部分圖形是四邊形時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,弦AB、CD相交于點E,且ABCD,∠BEDαα180°).有下列結論:①∠BODα,②∠OAB90°α,③∠ABC.其中一定成立的個數(shù)為( 。

A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點AB、CD都在這些小正方形的頂點上,AB、CD相交于點O,則cosAOD=___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(知識回顧)

我們把連結三角形兩邊中點的線段叫做三角形的中位線,并且有:三角形的中位線平行于第三邊,并且等于第三邊的一半.

(定理證明)

將下列的定理證明補充完整:

已知:如圖①,在ABC中,點DE分別是邊AB、AC中點,連結DE

求證:

證明:

(定理應用)

如圖②,在ABC中,AB10,∠ABC60°,點P、Q分別是邊AC、BC的中點,連結PQ

1)線段PQ的長為   

2)以點C為一個端點作線段CDCDAB不平行),連結AD,取AD的中點M,連結PM、QM

①在圖②中補全圖形.

②當∠PQM=∠PMQ時,求CD的長.

③在②的條件下,當PQM面積最大時,直接寫出∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OP1A1B1A1P2A2B2,A2P3A3B3,An1PnAnBn都是正方形,其中點A1A2、A3Any軸上,點P1x1,y1),P2x2,y2),…,Pnxnyn)在反比例函數(shù)yx0)的圖象上,已知B1(﹣11),則點Pn的坐標為( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A

1)判斷直線MN⊙O的位置關系,并說明理由;

2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案