【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和,例如:分別可以按如圖所示的方式“分裂”成2個,3個和4個連續(xù)奇數(shù)的和,即,,…,若也按照此規(guī)律來進行“分裂”,則“分裂”出的奇數(shù)中,最大的奇數(shù)是(

A.39B.41C.43D.45

【答案】B

【解析】

觀察可發(fā)現(xiàn),奇數(shù)的個數(shù)與底數(shù)相同,先求出到以6為底數(shù)的立方的最后一個奇數(shù)為止,所有的奇數(shù)的個數(shù)為20,再求出從3開始的第20個奇數(shù)即可得解.

233、52個奇數(shù),337、9113個奇數(shù),4313、1517194個奇數(shù),
,
63共有6個奇數(shù),
∴到63分裂出的奇數(shù)為止,一共有奇數(shù):2+3+4+5+6=20,
又∵3是第一個奇數(shù),
∴第20個奇數(shù)為20×1+1=41
63分裂出的奇數(shù)中,最大的奇數(shù)是41
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強學(xué)生的交通安全意識,某中學(xué)和交警大隊聯(lián)合舉行了我當一日小交警活動,星期天選派部分學(xué)生到交通路口值勤,協(xié)助交通警察維護交通秩序.若每一個路口安排4人,那么還剩下78人;若每個路口安排8人,那么最后一個路口不足8人,但不少于4人.求這個中學(xué)共選派值勤學(xué)生多少人?共有多少個交通路口安排值勤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,是角平分線,過點,交邊的延長線于點,.

(1)求證:是等腰三角形;

(2)的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是麗水市統(tǒng)計局公布的2010~2013年全社會用電量的折線統(tǒng)計圖.

(1)根據(jù)統(tǒng)計圖填寫統(tǒng)計表:

2010~2013年麗水市全社會用電量統(tǒng)計表

年份

2010

2011

2012

2013

全社會用電量

(單位:億KW·h)

13.33

(2)根據(jù)麗水市2010年至2013年全社會用電量統(tǒng)計數(shù)據(jù),2011~2013年全社會用電量的年平均增長率(保留到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.

(1)試判斷△ABC的形狀;

(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=(x﹣1)2+k的圖象與x軸交于點A(﹣1,0),C兩點,與y軸交于點B.

(1)求拋物線解析式及B點坐標;

(2)在拋物線上是否存在點P使S△PAC=S△ABC?若存在,求出P點坐標,若不存在,請說明理由;

(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形,若存在,求出Q點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中,xy的部分對應(yīng)值如下表:

x

﹣3

﹣2

﹣1

0

y

0

﹣3

﹣4

﹣3

下列結(jié)論:

①ac<0;

②當x>1時,yx的增大而增大;

③﹣4是方程ax2+(b﹣4)x+c=0的一個根;

④當﹣1<x<0時,ax2+(b﹣1)x+c+3>0.其中正確結(jié)論的個數(shù)為(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A,測得河的北岸邊點B在其北偏東45°方向,然后向西走60 m到達點C,測得點B在點C的北偏東60°方向如圖②.

(1)求∠CBA的度數(shù);

(2)求出這段河的寬(結(jié)果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點,且經(jīng)過點,與軸分別交于兩點.

1)求直線和該拋物線的解析式;

2)如圖1,點是拋物線上的一個動點,且在直線的上方,過點軸的平行線與直線交于點,求的最大值;

3)如圖2,軸交軸于點,點是拋物線上、之間的一個動點,直線、分別交于、,當點運動時,求的值.

查看答案和解析>>

同步練習(xí)冊答案