精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,點A1是以原點O為圓心,半徑為2的圓與過點(0,1)且平行于x軸的直線l1的一個交點;點A2是以原點O為圓心,半徑為3的圓與過點(0,2)且平行于x軸的直線l2的一個交點;…按照這樣的規(guī)律進行下去,點A20的橫坐標(biāo)為
 
分析:根據(jù)題意,可以首先求得A1
3
,1),A2
5
,2),A3
7
,3).根據(jù)這些具體值,不難發(fā)現(xiàn):An的縱坐標(biāo)是n,橫坐標(biāo)是
2n+1
解答:解:∵點A1是以原點O為圓心,半徑為2的圓與過點(0,1)且平行于x軸的直線l1的一個交點,
∴A1的縱坐標(biāo)為1,橫坐標(biāo)為:
22-12
=
3
,即A1
3
,1);
同理可求:A2
5
,2),A3
7
,3)
∴根據(jù)這些具體值,得出規(guī)律:An的縱坐標(biāo)是n,橫坐標(biāo)是
2n+1
.即An的坐標(biāo)為(
2n+1
,n
).
故答案為(
41
,20
).
點評:此題考查了垂徑定理和勾股定理,可以首先求得幾個具體值,然后進一步發(fā)現(xiàn)坐標(biāo)和腳碼的規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案