【題目】在平面直角坐標(biāo)系中,直線與雙曲線相交于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式:
(2)畫出直線和雙曲線的示意圖;
(3)直接寫出的解集______;
(4)若點(diǎn)是坐標(biāo)軸負(fù)半軸上一點(diǎn),且滿足.直接寫出點(diǎn)的坐標(biāo)______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)銷一種成本為10元的產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(件)與銷售單價( 元/件 )的關(guān)系如下表:
15 | 20 | 25 | 30 | |||
550 | 500 | 450 | 400 |
設(shè)這種產(chǎn)品在這段時間內(nèi)的銷售利潤為(元),解答下列問題:
(1)如是的一次函數(shù),求與的函數(shù)關(guān)系式;
(2)求銷售利潤與銷售單價之間的函數(shù)關(guān)系式;
(3)求當(dāng)為何值時,的值最大?最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=12,點(diǎn)E在AD邊上,且AE=8,EF⊥BE交CD于F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“學(xué)雷鋒社會實(shí)踐”活動中,某校為了解全校1200名學(xué)生參加活動的情況,隨機(jī)調(diào)查了50名學(xué)生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計(jì)圖如下:
(Ⅰ)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)樣本數(shù)據(jù),估算該校1200名學(xué)生共參加了多少次活動.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
(1)若求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若,是否存在實(shí)數(shù),使得相應(yīng)的y=1,若有,請指明有幾個并證明你的結(jié)論,若沒有,闡述理由。
(3)若且拋物線在區(qū)間上的最小值是-3,求b的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,給出如下定義:若點(diǎn)在圖形上,點(diǎn)在圖形上,如果兩點(diǎn)間的距離有最小值,那么稱這個最小值為圖形的“近距離”,記為.特別地,當(dāng)圖形與圖形有公共點(diǎn)時,.
已知,,,
(1)點(diǎn),點(diǎn) ,點(diǎn),線段 ;
(2)⊙半徑為,
①當(dāng)時,求⊙與線段的“近距離”⊙,線段;
②若⊙,,則 .
(3)為軸上一點(diǎn),⊙的半徑為1,點(diǎn)關(guān)于軸的對稱點(diǎn)為點(diǎn),⊙與的“近距離”⊙,,請直接寫出圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請?jiān)趫D中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義一種新函數(shù):形如的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)的圖象(如圖所示),并寫出下列五個結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,和;②圖象具有對稱性,對稱軸是直線;③當(dāng)或時,函數(shù)值隨值的增大而增大;④當(dāng)或時,函數(shù)的最小值是;⑤當(dāng)時,函數(shù)的最大值是,其中正確結(jié)論的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O過ABCD的三頂點(diǎn)A、D、C,邊AB與⊙O相切于點(diǎn)A,邊BC與⊙O相交于點(diǎn)H,射線AD交邊CD于點(diǎn)E,交⊙O于點(diǎn)F,點(diǎn)P在射線AO上,且∠PCD=2∠DAF.
(1)求證:△ABH是等腰三角形;
(2)求證:直線PC是⊙O的切線;
(3)若AB=2,AD=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com