【題目】“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.
(1)求與之間的函數(shù)關系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
【答案】(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.
【解析】(1)可用待定系數(shù)法來確定y與x之間的函數(shù)關系式;
(2)根據(jù)利潤=銷售量×單件的利潤,然后將(1)中的函數(shù)式代入其中,求出利潤和銷售單件之間的關系式,然后根據(jù)其性質來判斷出最大利潤;
(3)首先得出w與x的函數(shù)關系式,進而利用所獲利潤等于3600元時,對應x的值,根據(jù)增減性,求出x的取值范圍.
(1)由題意得: .
故y與x之間的函數(shù)關系式為:y=-10x+700,
(2)由題意,得
-10x+700≥240,
解得x≤46,
設利潤為w=(x-30)y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50時,w隨x的增大而增大,
∴x=46時,w大=-10(46-50)2+4000=3840,
答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如圖所示,由圖象得:
當45≤x≤55時,捐款后每天剩余利潤不低于3600元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補.
(1)試說明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知有理數(shù)a、b在數(shù)軸上的對應點如圖所示.
(1)已知a=–2.3,b=0.4,計算|a+b|–|a|–|1–b|的值;
(2)已知有理數(shù)a、b,計算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知四邊形ABCD是平行四邊形,下列結論中,不一定正確的是( )
A.△AOB的面積等于△AOD的面積B.當AC⊥BD時,它是菱形
C.當OA=OB時,它是矩形D.△AOB的周長等于△AOD的周長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號得正,異號得負,得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為 或.
(1)探究:解不等式 .
(2)應用:不等式 的解集是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.
(1)請畫出平移后的△DEF;
(2)請利用格點畫出△ABC的高BM;
(3)△DEF的面積為 ;
(4)若連接AD、CF,則這兩條線段之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=80°,∠BAC=40°.
(1)尺規(guī)作圖作出AB的垂直平分線DE,分別與AC、AB交于點D、E.并連結BD;(保留作圖痕跡,不寫作法)
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定,中小學生每天在校體育活動時間不低于1h,為了解這項政策的落實情況,有關部門就“你某天在校體育活動時間是多少”的問題,在某校隨機抽查了部分學生,再根據(jù)活動時間t(h)進行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:
(1)此次抽查的學生為人;
(2)補全條形統(tǒng)計圖;
(3)請你求出扇形統(tǒng)計圖中B組扇形所對應的圓心角的度數(shù)
(4)若當天在校學生為1200人,請估計在當天達到國家規(guī)定體育活動時間的學生有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c, y與x的一些對應值如下表:
x | …… | 1 | 0 | 1 | 2 | 3 | 4 | …… |
ax2+bx+c | …… | 3 | 1 | 3 | …… |
(1)根據(jù)表格中的數(shù)據(jù),確定二次函數(shù)解析式為_________________;
(2)填齊表格中空白處的對應值并利用上表,用五點作圖法,畫出二次函數(shù)y=ax2+bx+c的圖象.(不必重新列表)
(3)當 1 < x ≤4時,y的取值范圍是_________________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com