【題目】(9分)為進(jìn)一步推廣“陽光體育”大課間活動,某中學(xué)對已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動項目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:

(1)請計算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補(bǔ)充完整;

(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率

【答案】(1)60(人),40%,(2)

【解析】

試題(1)用A的人數(shù)除以所占的百分比,即可求出調(diào)查的學(xué)生數(shù);用抽查的總?cè)藬?shù)減去A、B、D的人數(shù),求出喜歡“跑步”的學(xué)生人數(shù),再除以被調(diào)查的學(xué)生數(shù),求出所占的百分比,再畫圖即可;

(2)用A表示男生,B表示女生,畫出樹形圖,再根據(jù)概率公式進(jìn)行計算即可

試題解析:解:(1)根據(jù)題意得:

15÷10%=150(名)

本項調(diào)查中喜歡“跑步”的學(xué)生人數(shù)是;150﹣15﹣45﹣30=60(人),

所占百分比是:×100%=40%,

畫圖如下:

(2)用A表示男生,B表示女生,畫圖如下:

共有20種情況,同性別學(xué)生的情況是8種,

則剛好抽到同性別學(xué)生的概率是=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+k2+2k0有兩個實(shí)數(shù)根x1,x2

1)求實(shí)數(shù)k的取值范圍.

2)是否存在實(shí)數(shù)k,使得x1x2x12x22=﹣16成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是( 。

A. 48B. 63C. 80D. 99

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過點(diǎn)A,B,C,已知點(diǎn)A(﹣10),點(diǎn)C0,3).

1)求拋物線的表達(dá)式;

2P為線段BC上一點(diǎn),過點(diǎn)Py軸的平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時,求點(diǎn)P的坐標(biāo);

3)設(shè)E是拋物線上的一點(diǎn),在x軸上是否存在點(diǎn)F,使得A,C,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這是某班數(shù)學(xué)科代表根據(jù)他們班上學(xué)期的數(shù)學(xué)成績畫出的頻數(shù)分布直方圖,從這個圖中,請你回答下列問題:

1)你認(rèn)為他們班共有學(xué)生多少名?

2)全班數(shù)學(xué)成績及格率(60分及以上為及格)為多少?

3)在哪個分?jǐn)?shù)段的學(xué)生最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對角互補(bǔ)且有一組鄰邊相等的四邊形稱為奇異四邊形.

1)概念理解:

在平行四邊形、菱形、矩形、正方形中,你認(rèn)為屬于奇異四邊形的有__________

2)性質(zhì)探究:

①如圖1,四邊形ABCD是奇異四邊形,AB=AD,求證:CA平分∠BCD

②如圖2,四邊形ABCD是奇異四邊形,AB=AD,∠BCD=,試說明:cosα=

3)性質(zhì)應(yīng)用:

如圖3,四邊形ABCD是奇異四邊形,四條邊中僅有BC=CD,且四邊形ABCD的周長為6+2,∠BAC=45°,AC=3,求奇異四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點(diǎn)P⊙O外一點(diǎn),連接PAPB,AB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8⊙O的半徑為,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5y軸交于點(diǎn)A,與x軸交于點(diǎn)B.拋物線y=﹣x2+bx+cA、B兩點(diǎn).

1)點(diǎn)A,B的坐標(biāo)分別是A   B   ;

2)求拋物線的解析式;

3)過點(diǎn)AAC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一動點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時,四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B的坐標(biāo)分別為,線段CDAB關(guān)于點(diǎn)中心對稱,點(diǎn)A、B的對應(yīng)點(diǎn)分別為點(diǎn)CD

當(dāng)時,畫出線段CD,并求四邊形ABCD的面積;

當(dāng)______時,四邊形ABCD為正方形;

當(dāng)時,連接PA、PB,在OA上有一點(diǎn)M,且,則點(diǎn)M的坐標(biāo)為______

查看答案和解析>>

同步練習(xí)冊答案