【題目】如圖,已知多邊形ABCDEF中,AB=AF,DC=DE,BC=EF,∠ABC=∠BCD.請僅用無刻度的直尺,分別按下列要求畫圖.
(1)在圖①中,畫出一個以BC為邊的矩形;
(2)在圖②中,若多邊形ABCDEF是正六邊形,試在AF上畫出點(diǎn)M,使得AM=AF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘗試探究:如圖,在中,,,E,F分別是BC,AC上的點(diǎn),且,則______;
類比延伸:如圖,若將圖中的繞點(diǎn)C順時針旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,值是否發(fā)生變化?請僅就圖的情形寫出推理過程;
拓展運(yùn)用:若,,在旋轉(zhuǎn)過程中,當(dāng)B,E,F三點(diǎn)在同一直線上時,請直接寫出此時線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個矩形紙片放置在平面直角坐標(biāo)系內(nèi),點(diǎn),點(diǎn),點(diǎn).點(diǎn)是線段上的動點(diǎn),將沿翻折得到.
(Ⅰ)如圖①,當(dāng)點(diǎn)落在線段上時,求點(diǎn)的坐標(biāo);
(Ⅱ)如圖②,當(dāng)點(diǎn)為線段中點(diǎn)時,求線段的長度;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為4米/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn),與軸的另一個交點(diǎn)為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點(diǎn)P,使△AOP的面積為3,若存在請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=45°,BC=1,AB=,△AB'C'可以由△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)得到(B與B'對應(yīng),C與C'對應(yīng)),連接CB',且C、B'、C'恰好在同一條直線上,則CC'的長為( )
A.4B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于南岸區(qū)黃桷埡的文峰塔,有著“平安寶塔”之稱.某校數(shù)學(xué)社團(tuán)對其高度 AB進(jìn)行了測量.如圖,他們從塔底A的點(diǎn)B出發(fā),沿水平方向行走了13米,到達(dá)點(diǎn)C,然后沿斜坡CD繼續(xù)前進(jìn)到達(dá)點(diǎn)D處,已知DC=BC.在點(diǎn)D處用測角儀測得塔頂A的仰角為42°(點(diǎn)A,B,C,D,E在同一平面內(nèi)).其中測角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
A. 22.5 米 B. 24.0 米 C. 28.0 米 D. 33.3 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個實(shí)數(shù)根x1、x2.
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com