如圖,直線y=與x軸交于點A,與y軸交于點C,以AC為直徑作⊙M,點是劣弧AO上一動點(點與不重合).拋物線y=-經過點A、C,與x軸交于另一點B,
(1)求拋物線的解析式及點B的坐標;
(2)在拋物線的對稱軸上是否存在一點P,是︱PA—PC︱的值最大;若存在,求出點P的坐標;若不存在,請說明理由。
(3)連交于點,延長至,使,試探究當點運動到何處時,直線與⊙M相切,并請說明理由.
(1) B(1,0)
(2)P(-1,)
(3)當D運動到劣弧AO的中點時,直線AG與⊙M相切.證明見解析
解析試題分析:(1)先求出A、C點坐標,再代入y=-即可求出b、c的值,從而確定拋物線的解析式,由于點A、B關于拋物線的對稱軸對稱,從而可求出點B的坐標.
(2)連接BC并延長交拋物線對稱軸于一點,這一點就是點P.
(3)當D運動到劣弧AO的中點時,直線AG與⊙M相切.
試題解析:(1)解:由 得A(-3,0),C(0, )
將其代入拋物線解析式得: 解得:
∴
∵對稱軸是x=-1
∴由對稱性得B(1,0)
(2)解:延長BC與對稱軸的交點就是點P
由B(1,0),C(0,)求得直線BC解析式為:
當x=-1時,y=
∴P(-1, )
(3)結論:當D運動到劣弧AO的中點時,直線AG與⊙M相切.
證明:∵在RT△AOC中,tan∠CAO=,
∴∠CAO=30°,∠ACO=60°,
∵點D是劣弧AO的中點,
∴弧AD=弧OD
∴∠ACD=∠DCO=30°,
∴OF=OCtan30°=1,∠CF O=60°,
∴△AFG中,AF=3-1=2,∠AFG=∠CFO=60°,
∵FG=2,
∴△AFG為等邊三角形,
∴∠GAF=60°,
∴∠CAG=30°+60°=90°,
∴AC⊥AG,
∴AG為⊙M的切線.
考點: 1. 二次函數綜合題;2.直線與圓的位置關系.
科目:初中數學 來源: 題型:解答題
若兩個二次函數圖象的頂點,開口方向都相同,則稱這兩個二次函數為“同簇二次函數”。
(1)請寫出兩個為“同簇二次函數”的函數;
(2)已知關于x的二次函數y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的圖象經過點A(1,1),若y1+y2為y1為“同簇二次函數”,求函數y2的表達式,并求當0≤x≤3時,y2的最大值。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在矩形ABCD中,AB=1,BC=3,點E為BC邊上的動點(點E與點B、C不重合),設BE=x.
操作:在射線BC上取一點F,使得EF=BE,以點F為直角頂點、EF為邊作等腰直角三角形EFG,設△EFG與矩形ABCD重疊部分的面積為S.
(1)求S與x的函數關系式,并寫出自變量x的取值范圍;
(2)S是否存在最大值?若存在,請直接寫出最大值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.
(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(點P與F、G不重合),作PQ∥y軸與拋物線交于點Q.
(1)若經過B、E、C三點的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b= ,c= (直接填空)
(2)①以P、D、E為頂點的三角形是直角三角形,則點P的坐標為 (直接填空)
②若拋物線頂點為N,又PE+PN的值最小時,求相應點P的坐標.
(3)連結QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設△PBQ的面積為S,試寫出S與t之間的函數關系式,并寫出t的取值范圍.
②當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在平面直角坐標系中,反比例函數與二次函數y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當k=-2時,求反比例函數的解析式;
(2)要使反比例函數與二次函數都是y隨著x的增大而增大,求k應滿足的條件以及x的取值范圍.
(3)設二次函數的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知拋物線yn=-(x-an)2+an(n為正整數,且0<a1<a2<…<an)與x軸的交點為An-1(,0)和An(bn,0).當n=1時,第1條拋物線y1=-(x-a1)2+a1與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1) 求a1、b1的值及拋物線y2的解析式;
(2) 拋物線y3的頂點坐標為(____,___);依此類推第n條拋物線yn的頂點坐標為(_____,_____)(用含n的式子表示);所有拋物線的頂點坐標滿足的函數關系式是_____________;
(3) 探究下列結論:
①若用An-1 An表示第n條拋物線被x軸截得的線段的長,則A0A1=______,An-1 An=____________;
②是否存在經過點A1(b1,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某工廠生產一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與薄板的大小無關,是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數據,
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com