【題目】在平面直角坐標(biāo)系中,拋物線與軸的交點為A,B(點A 在點B的左側(cè)).
(1)求點A,B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點叫整點.
①直接寫出線段AB上整點的個數(shù);
②將拋物線沿翻折,得到新拋物線,直接寫出新拋物線在軸上方的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù).
【答案】(1)點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,0)(2)①5;②6.
【解析】
(1)根據(jù)x軸上的點的坐標(biāo)特征即y=0,可得關(guān)于x的方程,解方程即可;
(2)①直接寫出從-1到3的整數(shù)的個數(shù)即可;
②先確定新拋物線的解析式,進(jìn)而可得其頂點坐標(biāo),再結(jié)合函數(shù)圖象解答即可.
解:(1)在中 ,令y=0,,解得:,
∴點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,0);
(2)①線段AB之間橫、縱坐標(biāo)都是整數(shù)的點有(-1,0)、(0,0)、(1,0)、(2,0)、(3,0).
∴線段AB上一共有5個整點;
②拋物線沿翻折,得到的新拋物線是,如圖,其頂點坐標(biāo)是(1,1),
觀察圖象可知:線段AB上有5個整點,頂點為1個整點,新拋物線在軸上方的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)共6個整點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,
(1)求證:△AME∽△BEC.
(2)若△EMC∽△AME,求AB與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.過點D作DG∥BE,交BC于點G,連接FG交BD于點O.若AB=6,AD=8,則DG的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上同學(xué)們借助兩個直角三角形紙板進(jìn)行探究,直角三角形紙板如圖所示,分別為Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm. 當(dāng)邊AC與DE重合,且邊AB和DF在同一條直線上時:
(1)在下邊的圖形中,畫出所有符合題意的圖形;
(2)求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.一顆質(zhì)地均勻的骰子已連續(xù)拋擲了2000次,其中拋擲出5點的次數(shù)最少,則第2001次一定拋擲出5點
B.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等
C.明天降雨的概率是80%,表示明天有80%的時間降雨
D.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn),連續(xù)翻轉(zhuǎn)2019次,點的落點依次為,,,…,則的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點E在邊BC上,將△ABE沿AE折疊,點B恰好落在對角線AC上的點B′處.則線段BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品的標(biāo)價為400元/件,經(jīng)過兩次降價后的價格為324元/件,并且兩次降價的百分率相同.
(1)求該種商品每次降價的百分率;
(2)若該種商品進(jìn)價為300元/件,兩次降價共售出此種商品100件,共獲利3192元.問第二次降價后售出該種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩點M(x1,y1),N(x2,y2),則線段MN的中點K(x,y)的坐標(biāo)公式為:x=,y=. 如圖,已知點O為坐標(biāo)原點,點A(﹣3,0),⊙O經(jīng)過點A,點B為弦PA的中點.若點P(a,b),則有a,b滿足等式:a2+b2=9.設(shè)B(m,n),則m,n滿足的等式是( )
A.m2+n2=9B.()2+()2=9
C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com