如圖,在平面直角坐標(biāo)系中,?ABCO的頂點O在原點,點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(0,2),點C在第一象限.
(1)直接寫出點C的坐標(biāo);
(2)將?ABCO繞點O逆時針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點D與點O重合).FG與邊AB、x軸分別交于點Q、點P.設(shè)此時旋轉(zhuǎn)前后兩個平行四邊形重疊部分的面積為S0,求S0的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動的過程中,設(shè)動點D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫出結(jié)果)
(1)C(2,2);

(2)∵A(-2,0),B(0,2)
∴OA=OB=2
∴∠BAO=∠ABO=45°
∵?EFGD由?ABCO旋轉(zhuǎn)而成
∴DG=OA=2,∠G=∠BAO=45°
∵?EFGD
∴FGDE
∴∠FPA=∠EDA=90°
在Rt△POG中,OP=OG•sin45°=
2

∵∠AQP=90°-∠BAO=45°
∴PQ=AP=OA-OP=2-
2

S0=
1
2
(PQ+OB)•OP=
1
2
(2-
2
+2)•
2
=2
2
-1.

(3)
當(dāng)?DEFG運動到點F在AB上時,如圖①,t=2
2
-2
①當(dāng)0<t≤2
2
-2時,如圖②,S=-t2+
2
t+2
2
-1;
②當(dāng)2
2
-2<t≤
2
時,如圖③,S=-
1
2
t2+4
2
-3;
③當(dāng)
2
<t≤2時,如圖④,S=-
2
t+4
2
-2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCO是矩形,點A(3,0),B(3,4),動點M、N分別從點O、B出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NPOC,交AC于點P,連接MP,已知動點運動了x秒,△MPA的面積為S.
(1)求點P的坐標(biāo).(用含x的代數(shù)式表示)
(2)寫出S關(guān)于x的函數(shù)關(guān)系式,并求出S的最大值.
(3)當(dāng)△APM與△ACO相似時,求出點P的坐標(biāo).
(4)△PMA能否成為等腰三角形?如能,直接寫出所有點P的坐標(biāo);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長線上,取B關(guān)于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關(guān)于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為______.
(2)實踐運用
如圖3,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數(shù)為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標(biāo)與△ACM周長最小值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標(biāo);若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線y=ax2+bx+c與x軸交于兩個不同的點A(-l,0)、B(4,0),與y軸交于點C(0,2).
(1)求拋物線的解析式:
(2)問拋物線上是否存在一點M,使得S△ABM=2S△ABC?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)已知點D(1,n)在拋物線上,過點A的直線y=-x-1交拋物線于另一點E.
①求tan∠ABD的值:
②若點P在x軸上,以點P、B、D為頂點的三角形與△AEB相似,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

下表給出了一個二次函數(shù)的一些取值情況:
x…024
y…3-13
(1)求這個二次函數(shù)的解析式,并求出其圖象與x軸的交點坐標(biāo);
(2)請在如圖所示的坐標(biāo)系中畫出這個二次函數(shù)的圖象;
(3)根據(jù)其圖象寫出x取何值時,y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,斜坡PQ的坡度i=1:
3
,在坡面上點O處有一根1m高且垂直于水平面的水管OA,頂端A處有一旋轉(zhuǎn)式噴頭向外噴水,水流在各個方向沿相同的拋物線落下,水流最高點M比點A高出1m,且在點A測得點M的仰角為30°,以O(shè)點為原點,OA所在直線為y軸,過O點垂直于OA的直線為x軸建立直角坐標(biāo)系.設(shè)水噴到斜坡上的最低點為B,最高點為C.
(1)寫出A點的坐標(biāo)及直線PQ的解析式;
(2)求此拋物線AMC的解析式;
(3)求|xC-xB|;
(4)求B點與C點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的頂點P的坐標(biāo)為(1,-
4
3
3
),交x軸于A、B兩點,交y軸于點C(0,-
3
).
(1)求拋物線的表達式.
(2)把△ABC繞AB的中點E旋轉(zhuǎn)180°,得到四邊形ADBC.判斷四邊形ADBC的形狀,并說明理由.
(3)試問在線段AC上是否存在一點F,使得△FBD的周長最?若存在,請寫出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了順應(yīng)市場要求,某市電子玩具制造公司技術(shù)部研制開發(fā)一種新產(chǎn)品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標(biāo),求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達到6萬元?
(3)求第9個月公司所獲利潤是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案