【題目】某商店準備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應進貨多少個?
(3)商店若要獲得最大利潤,則每個應定價多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個定價為70元,應進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設每個定價增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70元,應進貨200個,
(3)設每個定價增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當x=15時,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.
【解析】
試題分析:延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45°,∠FCA=45°,根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.
試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=DE,
∴DM=HM=ME,
∴DM=ME.
(1)、如圖1,延長EM交AD于點H,
∵四邊形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM
∴DM=HM=ME,
∴DM=ME,
(2)、如圖2,連接AE,
∵四邊形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一條直線上,
在RT△ADF中,AM=MF,
∴DM=AM=MF,
在RT△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 兩點的坐標分別為,點分別是直線和x軸上的動點,,點是線段的中點,連接交軸于點;當⊿面積取得最小值時,的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接△ABC中,∠CAB=90°,AB=2AC,過點A作BC的垂線m交⊙O于另一點D,垂足為H,點E為上異于A,B的一個動點,射線BE交直線m于點F,連接AE,連接DE交BC于點G.
(1)求證:△FED∽△AEB;
(2)若=,AC=2,連接CE,求AE的長;
(3)在點E運動過程中,若BG=CG,求tan∠CBF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機可以計算行走的步數(shù)與相應的能量消耗.對比手機數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了了解在校初中生閱讀數(shù)學文化史類書籍的現(xiàn)狀,隨機抽取了初中部部分學生進行研究調(diào)查,依據(jù)相關數(shù)據(jù)繪制成以下不完整的的統(tǒng)計圖表,請你根據(jù)圖表中的信息解答下列問題:
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | C |
說不清楚 | 9 | 0.06 |
(1)求表格中a,b,c的值,并補全統(tǒng)計圖;
(2)若該校共有初中生2400名,請估計該校“不重視”閱讀數(shù)學文化史書籍的初中生人數(shù);
(3)若小明和小華去書店,打算從A,B,C,D四本數(shù)學文化史類書籍中隨機選取一本,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一本書籍的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計確診病例人數(shù)如圖所示.
(1)在5月17日至5月21日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來的5天中,繼續(xù)按這個平均數(shù)增加,那么到5月26日,日本甲型H1N1流感累計確診病例將會達到多少人?
(2)甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接疫情徹底結(jié)束后的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | ||
售價(元/雙) |
已知:用元購進甲種運動鞋的數(shù)量與用元購進乙種運動鞋的數(shù)量相同.
求的值;
要使購進的甲、乙兩種運動鞋共雙的總利潤(利潤售價進價)不少于元,且甲種運動鞋的數(shù)量不超過雙,問該專賣店共有幾種進貨方案;
在的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com