已知,△ABC是邊長3cm的等邊三角形.動點P以1cm/s的速度從點A出發(fā),沿線段AB向點B運動.
(1)如圖1,設(shè)點P的運動時間為t(s),那么t=
 
(s)時,△PBC是直角三角形;
(2)如圖2,若另一動點Q從點B出發(fā),沿線段BC向點C運動,如果動點P、Q都以1cm/s的速度同時出發(fā).設(shè)運動時間為t(s),那么t為何值時,△PBQ是直角三角形?
(3)如圖3,若另一動點Q從點C出發(fā),沿射線BC方向運動.連接PQ交AC于D.如果動點P、Q都以1cm/s的速度同時出發(fā).設(shè)運動時間為t(s),那么t為何值時,△DCQ是等腰三角形?
(4)如圖4,若另一動點Q從點C出發(fā),沿射線BC方向運動.連接PQ交AC于D,連接PC.如果動點P、Q都以1cm/s的速度同時出發(fā).請你猜想:在點P、Q的運動過程中,△PCD和△QCD的面積有什么關(guān)系?并說明理由.
精英家教網(wǎng)
分析:(1)當(dāng)△PBC是直角三角形時,∠B=60°,所以BP=1.5cm,即可算出t的值;
(2)因為∠B=60°,可選取∠BPQ=90°或∠BQP=90°,然后根據(jù)勾股定理計算出BP長,即可算出t的大小;
(3)因為∠DCQ=120°,當(dāng)△DCQ是等腰三角形時,CD=CQ,然后可證明△APD是直角三角形,即可根據(jù)題意求出t的值;
(4)面積相等.可通過同底等高驗證.
解答:解:(1)當(dāng)△PBC是直角三角形時,∠B=60°,
∠BPC=90°,所以BP=1.5cm,
所以t=
3
2
(2分)

(2)當(dāng)∠BPQ=90°時,BP=0.5BQ,
3-t=0.5t,所以t=2;
當(dāng)∠BQP=90°時,BP=2BQ,
3-t=2t,所以t=1;
所以t=1或2(s)(4分)

(3)因為∠DCQ=120°,當(dāng)△DCQ是等腰三角形時,CD=CQ,
所以∠PDA=∠CDQ=∠CQD=30°,
又因為∠A=60°,
所以AD=2AP,2t+t=3,
解得t=1(s);(2分)

(4)相等,如圖所示:
精英家教網(wǎng)
作PE垂直AD,QG垂直AD延長線,則PE∥QG,
所以,∠G=∠AEP,
因為
∠G=∠AEP
∠APE=∠CQG
AP=CQ
,
所以△EAP≌△GCQ(AAS),
所以PE=QG,所以,△PCD和△QCD同底等高,所以面積相等.
點評:本題主要考查對于勾股定理的應(yīng)用和等腰三角形的判定,還要注意三角形面積的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC是邊長為1的等邊三角形,D是射線BC上一動點(與點B、C不重合),以AD為一邊向右側(cè)作等邊△ADE,連接CE.
(1)當(dāng)點D在線段BC上運動時(如圖1),求證:①EC=DB;②EC∥AB;
(2)當(dāng)點D在線段BC的延長線上運動時(如圖2),②中的結(jié)精英家教網(wǎng)論是否仍然成立?請說明理由;
(3)當(dāng)EC=2時,求△ABC與△ADE的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•德化縣模擬)如圖,已知:△ABC是邊長為2
3
的等邊三角形,四邊形DEFG是邊長為3的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒
1
2
個單位長度的速度沿EF方向向右勻速運動,當(dāng)點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).
(1)在運動過程中,設(shè)AC交DE于點P,PE=
3
2
3
2
t;
(2)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,
①當(dāng)t為何值時,S等于△ABC面積的三分之一;
②當(dāng)點A在DG上運動時,請求出S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,若四邊形DEFG是邊長為2
3
的正方形,△ABC的移動速度為每秒
3
2
個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線F-G-D以每秒
3
個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線B-A-C于P點,則是否存在t的值,使得PC與EQ互相垂直?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆度安徽省望江縣七年級第二學(xué)期期末質(zhì)量檢測數(shù)學(xué) 題型:解答題

(9分)已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且

分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.

(1)求證:直線EF是⊙O的切線;

(2)當(dāng)直線DF與⊙O相切時,求⊙O的半徑.

 

查看答案和解析>>

同步練習(xí)冊答案