【題目】珍珍與環(huán)環(huán)兩人一起做游戲,游戲規(guī)則如下:每人從1,2,3,4,5,6,7,8中任意選擇一個數(shù)字,然后兩人各轉(zhuǎn)動一次如圖所示的轉(zhuǎn)盤(轉(zhuǎn)盤被分為面積相等的四個扇形),兩人轉(zhuǎn)出的數(shù)字之和等于誰事先選擇的數(shù),誰就獲勝;若兩人轉(zhuǎn)出的數(shù)字之和不等于她們各自選擇的數(shù),就再做一次上述游戲,直到?jīng)Q出勝負(fù).若環(huán)環(huán)事先選擇的數(shù)是5,用列表法或畫樹狀圖的方法,求她獲勝的概率.
【答案】
【解析】試題分析:先根據(jù)題意用列表法將所有的情況列出來,進(jìn)而得出所有等可能的情況以及結(jié)果是5的情況;
再運用概率公式即可求出小軍獲勝的概率.
試題解析:珍珍與環(huán)環(huán)轉(zhuǎn)動的數(shù)字分別記為甲與乙,兩人轉(zhuǎn)動后得到的數(shù)字之和可列表如下:
甲 乙 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
由上表可以看出,轉(zhuǎn)動兩次轉(zhuǎn)盤,可能出現(xiàn)的結(jié)果有16種,并且它們出現(xiàn)的可能性相等.
兩次轉(zhuǎn)動的點數(shù)之和為5(記為事件A)的結(jié)果共有4種
所以
答:環(huán)環(huán)獲勝的概率是
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是平行四邊形,對角線AC平分∠DAB,AC與BD相交于點O,DE⊥AB于E點.(1)求證:四邊形ABCD是菱形;
(2)若AC=8,BD=6,求DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABO中,AB⊥OB,OB=,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1的坐標(biāo)為
A.(﹣1,) B.(﹣1,)或(﹣2,0) C.(,﹣1)或(0,﹣2) D.(,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過點A(0,﹣4)的拋物線y=x2+bx+c與x軸相交于點B(﹣1,0)和C,O為坐標(biāo)原點.
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移7個單位長度,再向左平移m(m>0)個單位長度,得到新拋物線,若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)將x軸下方的拋物線圖象關(guān)于x軸對稱,得到新的函數(shù)圖象C,若直線y=x+k與圖象C始終有3個交點,求滿足條件的k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,為響應(yīng)號召,某商場計劃購進(jìn)甲,乙兩種節(jié)能燈共200只,這兩種節(jié)能燈的進(jìn)價、售價如下表:
進(jìn)價(元/只) | 售價(元/只) | |
甲型 | 20 | 30 |
乙型 | 30 | 45 |
(1)若購進(jìn)甲,乙兩種節(jié)能燈共用去5200元,求甲、乙兩種節(jié)能燈各進(jìn)多少只?
(2)若商場準(zhǔn)備用不多于5400元購進(jìn)這兩種節(jié)能燈,問甲型號的節(jié)能燈至少進(jìn)多少只?
(3)在(2)的條件下,該商場銷售完200只節(jié)能燈后能否實現(xiàn)盈利超過2690元的目標(biāo)?若能請你給出相應(yīng)的采購方案;若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)圖中存在幾對相似三角形?分別是什么?請直接寫出來不必證明;
(3)求證:OA2=OEOF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸交于A、B兩點,與y軸交于點C,點D為該拋物線的對稱軸上一點,當(dāng)點D到直線BC和到x軸的距離相等時,則點D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,一張△ABC 紙片,點 M、N 分別是 AC、BC 上兩點.
(1)若沿直線 MN 折疊,使 C 點落在 BN 上,則∠AMC′與∠ACB 的數(shù)量關(guān)系是 ;
(2)若折成圖 2 的形狀.猜想∠AMC′、∠BNC′和∠ACB 的數(shù)量關(guān)系,并說明理由.
猜想: .
理由:
(3)若折成圖3 的形狀,猜想∠AMC′、∠BNC′和∠ACB 的數(shù)量關(guān)系是 .(寫出結(jié)論即可).
(4)將上述問題推廣,如圖4,將四邊形 ABCD 紙片沿 MN 折疊,使點 C、D 落在四邊形 ABNM 的內(nèi)部時,∠AMD′+∠BNC′與∠C、∠D 之間的數(shù)量關(guān)系 是 (寫出結(jié)論即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com