【題目】如圖,AB為半圓O的直徑,C為BA延長(zhǎng)線上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9,

(1)求證:△COD∽△CBE;

(2)求半圓O的半徑的長(zhǎng)

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)證明DO||BE,COD∽△CBE.2利用(1)對(duì)應(yīng)邊成比例,求半徑的長(zhǎng).

試題解析:

1)解:CD切半圓于點(diǎn)D,ODO的半徑,

CDOD,

∴∠CDO=90°,

BECD于點(diǎn)E,

∴∠E=90°.

∵∠CDO=∠E=90°,∠C=∠C,

∴△COD∽△CBE.

2)解:Rt△BEC中,CE=12,BE=9,

CE=15,

∵△COD∽△CBE,

,

,

r=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019429日至2019107日,2019年中國(guó)北京世界園藝博覽會(huì)(簡(jiǎn)稱北京世園會(huì))在中國(guó)北京市延慶區(qū)舉行,展期162天.這是繼云南昆明后第二個(gè)獲得國(guó)際園藝生產(chǎn)者協(xié)會(huì)批準(zhǔn)及國(guó)際展覽局認(rèn)證授權(quán)舉辦的A1級(jí)國(guó)際園藝博覽會(huì).北京世園會(huì)門票種類分為平日票、指定日票、三次票等票種,同時(shí)按銷售對(duì)象分為普通票、優(yōu)惠票和團(tuán)隊(duì)票(學(xué)生享受優(yōu)惠票,15人以上可以享受團(tuán)體票).指定日包括開(kāi)園日、五一假期、端午節(jié)假期、中秋節(jié)假期、十一假期這些日期,其余時(shí)間為平日;三次票是指除指定日外,同一持票人在展會(huì)期間可以任選三天入園的票種. 具體如下表:

平日票價(jià)(元/張)

指定日票價(jià)(元/張)

三次票(元/張)

普通票

120

160

300

優(yōu)惠票

80

100

小明,小亮兩家共10人打算一起參觀北京世園會(huì)(10人均需購(gòu)票).

1)若他們端午節(jié)去北京世園會(huì)參觀購(gòu)買門票共用去1360元,問(wèn)買了普通票和優(yōu)惠票各幾張?

2)如果他們平日去北京世園會(huì)參觀,且購(gòu)買門票的費(fèi)用不超過(guò)2000元,那么在保證游玩的前提下最多可以買幾張三次票?共有幾種買票方案?分別是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到A′B′C,M、M′分別是AB、A′B′的中點(diǎn),若AC8,BC6,則線段MM′的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行直線間的距離都是1.如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,那么sinα=_.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB, AB 之間的距離為 2 ,C、D 是直線兩個(gè)動(dòng)點(diǎn)(點(diǎn) C D 點(diǎn)的左側(cè)),且 AB=CD=5.連接 AC、BC、BD,將ABC 沿 BC 折疊得到A′BC.若以 A′C、B、D 為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G。

(1)求證:ABE∽△DEF;

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線的解析表達(dá)式為:y=-3x+3,且與x軸交于點(diǎn)D,直線經(jīng)過(guò)點(diǎn)A,B,直線交于點(diǎn)C.

(1)求點(diǎn)D的坐標(biāo);

(2)求直線的解析表達(dá)式;

(3)求ADC的面積;

(4)在直線上存在異于點(diǎn)C的另一點(diǎn)P,使得ADP的面積是ADC面積的2倍,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按ABCD…的規(guī)律繞在ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( )

A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)DBC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將ABD沿AD折疊得到AED,AEBC交于點(diǎn)F

1)填空:∠AFC=______度;

2)求∠EDF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案