【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.
(1)點A的坐標(biāo)為 ;點B的坐標(biāo)為 ;
(2)求OC的長度,并求出此時直線BC的表達(dá)式;
(3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
【答案】(1)(4,0),(0,3);(2)y=﹣x+3;(3)見解析.
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)設(shè)OC=x,則AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系數(shù)法求出直線BC的解析式即可;
(3)過點O作OM∥AB交直線BC于M.由OM∥AB,可知S△AOB=S△ABM,由直線AB的解析式為,OM∥AB,推出直線OM的解析式為,由 解得 ,可得M,根據(jù)對稱性可知,經(jīng)過點O′(0,6)與直線AB平行的直線與直線BC的交點M′,也滿足條件.
解:(1)令y=0,則x=4;令x=0,則y=3,
故點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,3).
故答案為(4,0),(0,3);
(2)設(shè)OC=x,
∵直線CD垂直平分線段AB,
∴AC=CB=4﹣x,
∵∠BOA=90°,
∴OB2+OC2=CB2,
32+x2=(4﹣x)2,
解得
∴
∴設(shè)直線BC的解析式為y=kx+b,
則有
解得
∴直線BC的解析式為
(3)過點O作OM∥AB交直線BC于M.
∵OM∥AB,
∴S△AOB=S△ABM,
∵直線AB的解析式為,OM∥AB,
∴直線OM的解析式為
由解得,
∴M,
根據(jù)對稱性可知,經(jīng)過點O′(0,6)與直線AB平行的直線與直線BC的交點M′,也滿足條件,易知BM′=BM,
設(shè)M′(m,n),則有
∴
∴M′
綜上所述,滿足條件的點M坐標(biāo)為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接鄭州市第二屆“市長杯”青少年校園足球超級聯(lián)賽,某學(xué)校組織了一次體育知識競賽.每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個等級,其中相應(yīng)等級得分依次記為100分、90分、80分、70分.學(xué)校將八年級一班和二班的成績整理并繪制成統(tǒng)計圖,如圖所示.
(1)把一班競賽成績統(tǒng)計圖補充完整;
(2)寫出下表中a、b、c的值:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 | |
一班 | a | b | 90 | 106.24 |
二班 | 87.6 | 80 | c | 138.24 |
(3)根據(jù)(2)的結(jié)果,請你對這次競賽成績的結(jié)果進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié),在大明湖舉行第七屆會民健身運動會龍舟比賽中,甲、乙兩隊在500米的賽道上,所劃行的路程y(m)與時間x(min)之間的函數(shù)關(guān)系如圖所示,下列說法,其中正確的有( )
①乙隊比甲隊提前0.25min到達(dá)終點;
②0.5min后,乙隊比甲隊每分鐘快40m;
③當(dāng)乙隊劃行110m時,此時落后甲隊15m;
④自1.5min開始,甲隊若要與乙隊同時到達(dá)終點,甲隊的速度需要提高到260m/min.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2001年至2012年杭州市小學(xué)學(xué)校數(shù)量(單位:所)和在校學(xué)生人數(shù)(單位:人)的兩幅統(tǒng)計圖.由圖得出如下四個結(jié)論:
①學(xué)校數(shù)量2007年~2012年比2001~2006年更穩(wěn)定;
②在校學(xué)生人數(shù)有兩次連續(xù)下降,兩次連續(xù)增長的變化過程;
③2009年的 大于1000;
④2009~2012年,相鄰兩年的學(xué)校數(shù)量增長和在校學(xué)生人數(shù)增長最快的都是2011~2012年.
其中,正確的結(jié)論是( )
A.①②③④
B.①②③
C.①②
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A,B,C都在半徑為r的圓上,直線AD⊥直線BC,垂足為D,直線BE⊥直線AC,垂足為E,直線AD與BE相交于點H.若BH= AC,則∠ABC所對的弧長等于(長度單位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)x軸為直線l,函數(shù)y=﹣ x,y= x的圖象分別是直線l1 , l2 , 圓P(以點P為圓心,1為半徑)與直線l,l1 , l2中的兩條相切.例如( ,1)是其中一個圓P的圓心坐標(biāo).
(1)寫出其余滿足條件的圓P的圓心坐標(biāo);
(2)在圖中標(biāo)出所有圓心,并用線段依次連接各圓心,求所得幾何圖形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線lAC:y=﹣交x軸、y軸分別為A、C兩點,直線BC⊥AC交x軸于點B.
(1)求點B的坐標(biāo)及直線BC的解析式;
(2)將△OBC關(guān)于BC邊翻折,得到△O′BC,過點O′作直線O′E垂直x軸于點E,F(xiàn)是y軸上一點,P是直線O′E上任意一點,P、Q兩點關(guān)于x軸對稱,當(dāng)|PA﹣PC|最大時,請求出QF+FC的最小值;
(3)若M是直線O′E上一點,且QM=3,在(2)的條件下,在平面直角坐標(biāo)系中,是否存在點N,使得以Q、F、M、N四點為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國森博會,某商家計劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).
采購數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(元/件) | 1290 | 1280 | … |
(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的 ,且A產(chǎn)品采購單價不低于1200元,求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時總利潤最大,并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國古代計時器“漏壺”的示意圖,在壺內(nèi)盛一定量的水,水從壺底的小孔漏出.壺壁內(nèi)畫有刻度,人們根據(jù)壺中水面的位置計時,用x表示時間,y表示壺底到水面的高度,則y與x的函數(shù)關(guān)系式的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com